Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning

Zeynep Aytaç,†,‡ Zehra Irem Yildiz,†,‡ Fatma Kayaci-Senirmak,†,‡ Nalan Oya San Keskin,†,§,∥ Semran Ipek Kuskü,‡,∥ Engin Durgun,†,‡ Turgay Tekinay,∥,* and Tamer Uyar†,*†

†Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
‡UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
§Department of Biology, Polatlı Faculty of Literature and Science, Gazi University, Ankara 06900, Turkey
∥Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
∥Department of Engineering Physics, Istanbul Medeniyet University, Istanbul 34700, Turkey
*Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06560, Turkey

ABSTRACT: We have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HP/αCD, MβCD, and HP/γCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HP/αCD/limonene-IC-NF and HP/γCD/limonene-IC-NF because of the greater amount of preserved limonene. Moreover, MβCD/limonene-IC-NF has released only 25% (w/w) of its limonene, whereas HP/γCD/limonene-IC-NF and HP/γCD/limonene-IC-NF released 51 and 88% (w/w) of their limonene in 100 days, respectively. CD/limonene-IC-NFs exhibited high antibacterial activity against E. coli and S. aureus. The water solubility of limonene increased significantly and CD/limonene-IC-NFs were dissolved in water in a few seconds. In brief, CD/limonene-IC-NFs with fast-dissolving character enhanced the thermal stability and prolonged the shelf life along with antibacterial properties could be quite applicable in food and oral care applications.

KEYWORDS: electrospinning, essential oil, modified cyclodextrins, computational modeling, antibacterial activity

INTRODUCTION

Cyclodextrins (CDs) (Figure 1a) are ideal candidates for making host–guest inclusion complexes (IC) with a variety of active compounds thanks to their inherent cavity geometry and characteristic features. The internal cavity of a CD is composed of glucose residues that exhibit a hydrophobic nature, whereas the external part of a CD has hydrophilic character due to the hydroxy groups. The great significance of CDs lies in the access of nonpolar guest molecules to their cavity and further forming host–guest ICs by replacing the water molecules. This inclusion has been proven to be an efficient approach to improving the molecular stability and bioavailability of numerous drugs, essential oils, and flavors and fragrances. The incorporated guest molecules offer a number of advantages, including an enhancement of the solubility and thermal stability. Beside native CDs (α-CD, β-CD, γ-CD), significant effort has been devoted to the synthesis of chemically modified CDs (HP/αCD, MβCD, HP/γCD) to improve the solubility and complexing property of CDs for superior performance in a variety of applications including drug delivery and food.

The electrospinning approach has been universally acknowledged to produce functional fibers with nanoscale diameter from a variety of materials including polymers, inorganic materials, and composites. The exceptional characteristics of electrospun nanofibers have led to broad applications ranging from food packaging, wound dressing, and biomedical to filtration. In addition, nanofibers are effectively functionalized with number of molecules, which further extends their application areas. In general, polymers have been taken as a material/matrix for the fabrication of nanofibers owing to the chain entanglement and overlapping between the polymer chains. However, Celebioglu and Uyar successfully demonstrated the electrospinning of polymer-free nanofibers from various native and modified CDs without using any polymeric carrier matrix. The self-assembly and aggregation characteristics of CD molecules in concentrated solutions via the formation of intermolecular hydrogen bonding enable the production of nanofibers in the absence of a polymer matrix. Furthermore, our research group has successfully produced CD-IC-incorporated polymeric nanofibers. However, loading fewer guest molecules (only up to ~5%, w/w) in nanofibers and sometimes the necessity of using organic...
solvents were unavoidable. Therefore, the electrospinning of polymer-free CD-IC nanofibers was achieved successfully with a much higher loading capacity of guest molecules (up to ~10–15%, w/w) in aqueous solution.21,22 These polymer-free CD-IC nanofibers may open up new possibilities for various applications including cosmetic, biomedical, food packaging, and flavor/fragrance releasing.

Essential oils (EOs) are volatile complex compounds that are synthesized in plants and have a strong odor. It has been well reported that EOs possess antimicrobial, antioxidant, antifungal, antiviral, anticancer, insecticidal, and anti-inflammatory properties.23 Therefore, interest has been raised in using EOs in the pharmaceutical, cosmetic, and food industries. The impressive reports in the literature on EOs are mainly focused on the encapsulation of EOs to increase their solubility and decrease their volatility.24 Limonene (Figure 1b), monocyclic monoterpen, is the major component of citrus oils found in orange, lemon, mandarin, and grapefruit. It is a highly volatile compound extracted from plants and widely used in perfumes, creams, and soaps; as a flavor additive for food applications; and as fragrances in household cleaning products.25 Different approaches including complex formation with CDs26–28 and encapsulation in electrospun nanofibers29,30 were proposed in order to protect limonene from volatilization and control its release rate. Further, Fuenmayor et al. demonstrated the encapsulation of limonene/β-CD-IC containing only 3.1 wt % of a pullulan membrane.31

In this study, an IC of three modified CDs (HPβCD, MβCD, and HPyCD) and limonene was prepared in a 1:1 molar ratio (Figure 1b), and then electrospinning was performed without using any polymer matrix to obtain CD/limonene-IC-NF (Figure 1c). A phase solubility test was used to decide the solubility change in the limonene by the addition of different CDs at various concentrations. The morphology of CD/limonene-IC-NFs was evaluated using SEM imaging. The chemical, structural, and thermal characterization of CD/limonene-IC-NFs was examined by using 1H NMR, TGA, XRD, and DSC. Computational modeling studies were carried out to investigate the stoichiometry and the most favorable orientation of the guest to form a complex with each CD. The short-term temperature-dependent release (37, 50, and 75 °C) of limonene from CD/limonene-IC-NFs was measured using HS GC-MS for 3 h, whereas the long-term release of limonene from nanofibers at room temperature (RT) was measured by TGA for 100 days. The antibacterial activity of nanofibers was tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) using a colony-counting method.

EXPERIMENTAL PROCEDURES

Materials

Limonene (97%, Sigma, Germany) and deuterated dimethyl sulfoxide (DMSO-d6, minimum degree of deuteration 99.8% for NMR spectroscopy, Merck, Germany) were purchased and used as received without any further purification. Hydroxypropyl-β-cyclodextrin (HPβCD), methylated-β-cyclodextrin (MβCD), and hydroxypropyl-γ-cyclodextrin (HPγCD) were kindly donated by Wacker Chemie (Germany). The water used in the experiments was distilled–deionized from a Millipore Milli-Q ultrapure water system.

Preparation of Electrospinning Solutions

CD/limonene-ICs was formed in aqueous solution (0.5 mL) by using three types of modified CDs (HPβCD, MβCD, and HPγCD) in a 1:1 molar ratio with limonene (0.093, 0.119, and 0.084 g). First, CDs (200%, w/v) were placed in water and the solutions were stirred at room temperature (RT) until dissolving. Then, limonene was added to the solutions, and the resulting solutions were stirred at RT overnight. Finally, CD/limonene-IC solutions that are turbid were obtained, and then, clear and homogeneous solutions were obtained with the dissolution of limonene after 12 h. Electrospinning was performed after 12 h of stirring, and HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF webs were produced. The viscosity, conductivity of CD/limonene-IC solutions, and average fiber diameter (AFD) values of CD/limonene-IC nanofibers (CD/limonene-IC-NF) are shown in Table 2. Pure CD nanofibers without limonene (HPβCD-NF, MβCD-NF, and HPγCD-NF) were produced for comparative measurements according to our previous reports.32

Electrospinning of Nanofibers

CD/limonene-IC solutions were separately loaded into a 1 mL plastic syringe (metallic needle having a 0.4 mm inner diameter). The solutions were pumped through a syringe pump (KD Scientific, KDS-101, USA) at 0.5 mL/h rate. Grounded metal covered with aluminum foil was used as a collector and placed 10 cm from the needle tip. The electric field (15–20 kV) was applied from a high-voltage power supply (AU Series, Matsusada Precision Inc., Japan). Electrospinning experiments were carried out in an enclosed Plexiglas box at 25 °C and 18% relative humidity. The nanofibers were kept in the refrigerator until their use in analysis.

Measurements and Characterization

Phase-solubility measurements were performed in water according to the method of Higuchi and Connors.33 An excess amount of limonene was added to 5 mL of aqueous solutions containing increasing amounts of HPβCD, MβCD, and HPγCD. The suspensions were shaken at RT for 24 h. After equilibrium was achieved, the suspensions were filtered through a 0.45 μm membrane filter and diluted with water. To determine the amount of limonene dissolved, UV spectroscopy measurements were made at 235 nm (Varian, Cary 100). The phase solubility diagrams were drawn by plotting the molar concentration of limonene found in the solution against the molar concentration of CDs. The experiments were carried out in triplicate, and each data point is the average of three determinations.

The viscosity measurements of HPβCD/limonene-IC, MβCD/limonene-IC, and HPγCD/limonene-IC solutions were performed at RT via an Anton Paar Physica MCR 301 rheometer equipped with a cone/plate accessory (spindle type CP 40-2) at a constant shear rate of...
Journal of Agricultural and Food Chemistry

100 s⁻¹. The solution conductivity for CD/limonene-IC solutions was measured with an Inlab pH/Cond 720-WTW.

The morphology of HP/CD/limonene-IC-NF, Mj/CD/limonene-IC-NF, and HPyCD/limonene-IC-NF was investigated using scanning electron microscopy (SEM, FEI-Quanta 200 FEG). Prior to taking SEM images, nanofiber samples were placed on metal stubs by using double-sided copper tape, and in order to minimize the charging problem during SEM examination, samples were sputtered with 5 nm of Au/Pd (PES-682). AFD and the fiber diameter distribution of nanofibrous webs were calculated directly from SEM images by measuring the diameter of about 100 fibers.

The proton nuclear magnetic resonance (¹H NMR) spectra were recorded at 400 MHz (Bruker DPX-400). HP/CD/limonene-IC-NF, Mj/CD/limonene-IC-NF, and HPyCD/limonene-IC-NF (20 mg/mL) were dissolved in DMSO-d₆ to evaluate the molar ratio of CDs and limonene in each CD/limonene-IC by integrating the peak ratio of the characteristic chemical shifts corresponding to CD and limonene. Integration of the chemical shifts (δ) given in parts per million (ppm) was performed with Mestrenov software.

Thermogravimetric analysis (TGA, TA Q500, USA) was used to determine the thermal properties of limonene, HP/CD/limonene-IC NF, Mj/CD/limonene-IC-NF, and HPyCD/limonene-IC-NF (20 mg/mL) were dissolved in DMSO-d₆ to evaluate the molar ratio of CDs and limonene in each CD/limonene-IC by integrating the peak ratio of the characteristic chemical shifts corresponding to CD and limonene. Integration of the chemical shifts (δ) given in parts per million (ppm) was performed with Mestrenov software.

Thermogravimetric analysis (TGA, TA Q500, USA) was used to determine the thermal properties of limonene, HP/CD/limonene-IC NF, Mj/CD/limonene-IC-NF, and HPyCD/limonene-IC-NF (20 mg/mL) were dissolved in DMSO-d₆ to evaluate the molar ratio of CDs and limonene in each CD/limonene-IC by integrating the peak ratio of the characteristic chemical shifts corresponding to CD and limonene. Integration of the chemical shifts (δ) given in parts per million (ppm) was performed with Mestrenov software.

The crystalline structure of HP/CD-NF, Mj/CD-NF, HPyCD-NF, HP/CD/limonene-IC-NF, Mj/CD/limonene-IC-NF, and HPyCD/limonene-IC-NF were investigated in the range of 2θ = 5°–30° via X-ray diffraction (XRD) (PANalytical XPert powder diffractometer) using Cu Kα radiation in a powder diffraction configuration. XRD was not carried out for limonene because it is a liquid compound at RT.

The infrared spectra of limonene, HP/CD-NF, Mj/CD-NF, HPyCD-NF, HP/CD/limonene-IC-NF, Mj/CD/limonene-IC-NF, and HPyCD/limonene-IC-NF were obtained via a Fourier transform infrared spectrometer (FTIR) (Bruker-VERTEX 70). The samples were prepared as pellets by mixing limonene and nanofibers with potassium bromide (KBr) for the measurement. The scans (64) were recorded between 4000 and 400 cm⁻¹ at a resolution of 4 cm⁻¹.

The cumulative amount of limonene released from HP/CD/limonene-IC, Mj/CD/limonene-IC, and HPyCD/limonene-IC was measured using headspace gas chromatography–mass spectrometry (HS GC–MS) for 3 h. The instrument was an Agilent Technologies 7890A gas chromatograph coupled to an Agilent Technologies 5975C inert MSD combined with a triple-axis detector. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes. The NIST MS Search 2.0 library was used in SIM modes.

Phase Solubility Studies. The phase solubility profiles of HP/CD/limonene, Mj/CD/limonene, and HPyCD/limonene systems are presented in Supporting Information Figure S1. The obtained results clearly prove that the solubility of limonene has been increased up to 32 mM HP/CD in the HP/CD/limonene system, and beyond this concentration it starts to decrease. This might be due to the formation of a less water-soluble complex at a higher concentration of HP/CD. However, the solubility of limonene has been increased linearly for Mj/CD/limonene and HPyCD/limonene. Therefore, it could be concluded that the solubility curve of HP/CD/limonene dictates the A₁₅ type, whereas Mj/CD/limonene and HPyCD/limonene represent A₅₅-type solubility diagrams.

In addition, the linear solubility performance of limonene in Mj/CD and HPyCD systems reveals the 1:1 complex formation.

Molecular Modeling of CD/Limonene-IC. Although the thermodynamics of complexation reactions primarily involves van der Waals and hydrophobic interactions between guest molecule and CD, this process can also induce the removal of water molecules from the CD cavity, resulting in the rearrangement of the inclusion complex (IC). Therefore, we carried out a structural optimization of limonene, CDs (HP/CD, Mj/CD, and HPyCD) and their IC in vacuum, followed by optimizations in an aqueous medium. The guest molecule (single limonene) is introduced into the wide rim of
the cavity of HP/CD, M/CD, and HPγCD at various positions and two different orientations. These orientations include (i) a head, consisting of a methyl group, and (ii) a tail, consisting of an ethyl group of limonene headed inward toward the wide rim of the CD cavity as shown Figure 2a–c.

The complexation energy (E_{comp}) for the lowest-energy configuration of these ICs in 1:1 stoichiometry for three possible orientations is calculated as

$$E_{\text{comp}} = E_{\text{CD}} + E_{\text{guest}} - E_{\text{IC}}$$

(2)

where E_{CD}, E_{guest}, and E_{IC} are the total energy of CD (HP/CD, M/CD, and HPγCD), the guest limonene molecule, and IC, respectively. All energies are calculated in an aqueous medium. The results for 1:1 stoichiometry are summarized in Table 1. Our results indicate that limonene can form IC with all considered types of CDs with varying E_{comp} depending on the orientation of limonene and the type of CD. Because of the relative size matching between the cavity and the limonene molecule and the polarity of methyl groups, the strongest binding is obtained for M/CD with the tail orientation of limonene.

In addition, the solvation energies of bare limonene and ICs are calculated in order to rank their solubility in water. The solvation energy (E_{solv}) in an aqueous medium is calculated as

$$E_{\text{solv}} = E_{\text{(solvated)}} - E_{\text{(vacuum)}}$$

(3)

where $E_{\text{(solvated)}}$ and $E_{\text{(vacuum)}}$ are the total energy of molecules in solvent and vacuum, respectively. The calculated E_{solv} of bare limonene is -0.66 kcal/mol, which is very low and suggests poor solubility in water. On the other hand, E_{solv} values of ICs within HP/CD, M/CD, and HPγCD in water are -74.2, -29.5, and -89.4 kcal/mol, respectively, asserting exothermic solvation reactions for all ICs. The IC within HPγCD has the highest solubility, and the IC within M/CD has a lower solubility in water compared to the other ICs.

Morphology Analysis of Nanofibers. The morphological investigation clearly represents bead-free and uniform HP/CD/limonene-IC-NF, M/CD/limonene-IC-NF, and HPγCD/limonene-IC-NF (Figure 3a–c). The average fiber diameters (AFDs) of HP/CD/limonene-IC-NF, M/CD/limonene-IC-NF, and HPγCD/limonene-IC-NF were found to be 710 ± 470, 405 ± 210, and 1450 ± 500 nm, respectively. The change in the diameter of CD/limonene-IC nanofibers (CD/limonene-IC-NF) was due to the viscosity and conductivity differences between the solutions (Table 2). The measured conductivity was in the order of M/CD/limonene-IC solution > HP/CD/limonene-IC solution > HPγCD/limonene-IC solution. Thus, it is proven that the higher conductivity of M/CD/limonene-IC solution leads to a lower diameter of M/CD/limonene-IC-NF as compared to that of other nanofibers. Likewise, HP/CD/limonene-IC-NF has the highest diameter among all CD/limonene-IC-NFs because of the higher viscosity and lower conductivity of HPγCD/limonene-IC solution compared to those of other solutions. The photographs of free-standing

| Table 1. Complexation and Solvation Energies of Limonene within HP/CD, M/CD, and HPγCD |
|-----------------|----------|----------|----------|
| host | guest | E_{comp} (head) kcal/mol | E_{comp} (tail) kcal/mol | E_{solv} kcal/mol |
| limonene | limonene | -0.66 | -74.2 | -89.4 |
| HP/CD | limonene | 9.7 | 11.7 | -74.2 |
| M/CD | limonene | 10.7 | 12.6 | -29.5 |
| HPγCD | limonene | 5.9 | 7.1 | -89.4 |

Figure 2. (a) Chemical structure of limonene; top view of ICs of (b) HP/CD, (c) M/CD, and (d) HPγCD; and side view of ICs of (e) HP/CD, (f) M/CD, and (g) HPγCD with limonene in an aqueous medium. Gray, red, and yellow spheres represent carbon, oxygen, and hydrogen atoms, respectively.

Figure 3. SEM images of electrospun nanofibers obtained from solutions of (a) HP/CD-limonene-IC, (b) M/CD/limonene-IC, and (c) HPγCD/limonene-IC. Photographs of (d) HP/CD/limonene-IC-NF, (e) M/CD/limonene-IC-NF, and (f) HPγCD/limonene-IC-NF.
βCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF webs clearly represent their flexible and easily handled nature, which indicates that all CD/limonene-IC-NF webs have excellent mechanical integrity even though they are composed of CDs that are amorphous small molecules (Figure 3d−f). The solubility of limonene, HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF is shown in Figure 4 and Supporting Information videos 1 and 2. The observed results evidently show that CD/limonene-IC-NF webs completely dissolve in water within seconds; however, limonene does not dissolve, and an oily compound is easily visible on the surface.

Molar Ratio of CD/Limonene-IC. Supporting Information Figure S2a−c shows the proton nuclear magnetic resonance (1H NMR) spectra of HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF. The molar ratio between CD (HPβCD, MβCD, and HPγCD) and limonene in CD/limonene-IC-NF was calculated from the integration of the peak ratio between the peaks of HPβCD, MβCD, and HPγCD (1.029, 4.9, and 1.029 ppm) and limonene (1.616 ppm) as 1.00:0.42, 1.00:0.78, and 1.00:0.38 for HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF, respectively. Therefore, it is concluded that 42, 78, and 38% of the limonene was preserved in HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF, respectively. Besides, much more limonene evaporated from HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF during solution preparation, electrospinning, or storage.

Table 2. Properties of the Solutions Used for Electrospinning and Morphological Characteristics of the Resulting Nanofibers

<table>
<thead>
<tr>
<th>solutions</th>
<th>% CD (w/v)</th>
<th>% limonene (w/w)</th>
<th>viscosity (Pa⋅s)</th>
<th>conductivity (μS/cm)</th>
<th>average fiber diameter (nm)</th>
<th>fiber morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPβCD/limonene-IC</td>
<td>200</td>
<td>8.53</td>
<td>0.087</td>
<td>241</td>
<td>710 ± 470</td>
<td>bead free nanofibers</td>
</tr>
<tr>
<td>MβCD/limonene-IC</td>
<td>200</td>
<td>10.63</td>
<td>0.106</td>
<td>999</td>
<td>405 ± 210</td>
<td>bead free nanofibers</td>
</tr>
<tr>
<td>HPγCD/limonene-IC</td>
<td>200</td>
<td>7.75</td>
<td>0.168</td>
<td>2.24</td>
<td>1450 ± 500</td>
<td>bead free nanofibers</td>
</tr>
</tbody>
</table>

*a*With respect to solvent (water). *b*With respect to the total weight of the sample.

Thermal Analysis of Nanofibers. Thermal gravimetric analysis (TGA) of limonene, HPβCD-NF, MβCD-NF, HPγCD-NF, HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF is given in Figure 5a−c. Thermal evaporation of pure limonene started at about 50 °C and continued until 150 °C. Pristine HPβCD-NF, MβCD-NF, and HPγCD-NF exhibited two weight losses below 100 °C and above 275 °C that belong to the water loss and main thermal degradation of each CD, respectively.21 Three stages of weight loss were observed for HPβCD/limonene-IC-NF. The first weight loss below 100 °C belongs to the water loss, and second and third weight losses between 100 and 230 °C and above 275 °C correspond to limonene and HPβCD, respectively.

Figure 4. Presentation of the solubility behavior of pure limonene and HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF in water.
three steps of weight loss: the initial weight loss below 100 °C belongs to the water, the second weight loss between 165 and 245 °C is due to the limonene, and the third weight loss above 300 °C corresponds to the thermal degradation of HPyCD. A shift was observed in the thermal evaporation onset of limonene to higher temperature, and this shift was due to the inclusion complexation between HPyCD and limonene. Furthermore, the thermal stability of the second complex in MβCD/limonene-IC-NF was higher than for the complexes formed in HPβCD/limonene-IC-NF and HPyCD/limonene-IC-NF. This result indicated the existence of strong and more stable complexation between MβCD and limonene, which was also confirmed with the computational modeling studies. Here, the methyl groups of MβCD might increase the hydrophobic interaction and provide higher stability to the system.46

From the TGA data, the amounts of limonene in HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPyCD/limonene-IC-NF were calculated to be ~3.66%, ~8.45%, (2.71% and 5.74% belong to the first and second complex, respectively), and ~2.05% (w/w, with respect to CD), and these calculations confirmed that 43%, 80% (26% and 54%), and 26% of the limonene remained during the preparation, electrospinning processes, and storage, respectively. According to TGA results, the molar ratios of HPβCD, MβCD, and HPyCD to limonene were calculated to be 1.00:0.43, 1.00:0.80, and 1.00:0.27, respectively. The molar ratio of CD/limonene in CD/limonene-IC-NF samples calculated from the TGA data agreed well with the data obtained from 1H NMR. Therefore, limonene was preserved to a great extent in MβCD/limonene-IC-NF; however, a certain amount of limonene present in HPβCD/limonene-IC-NF and HPyCD/limonene-IC-NF was lost during the preparation, electrospinning, or storage. Nevertheless, it is anticipated that the CD-IC nanofiber matrix could preserve a much higher limonene content than could the polymeric nanofiber matrix. For instance, in our previous studies, we have seen that volatile molecules such as vanillin,42 allyl isothiocyanate,43 and geraniol43 could not be preserved at all in electrospun poly(vinyl alcohol) (PVA) nanofibers without CD-IC.

Differential scanning calorimetry (DSC) curves of HPβCD-NF, MβCD-NF, HPyCD-NF, HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPyCD/limonene-IC-NF are given in Figure 6a. The dehydration of CDs in HPβCD-NF, MβCD-NF, and HPyCD-NF is observed as typical broad endothermic peaks between 25 and 160, 25–155, and 25–155 °C, respectively. The endothermic peaks in the DSC curves of CD/limonene-IC-NFs were in the ranges of 65–160, 70–140, and 50–170 °C for HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPyCD/limonene-IC-NF, respectively. The enthalpies of endothermic transitions in HPβCD-NF, MβCD-NF, and HPyCD-NF were 329, 99, and 255 J/g, whereas the enthalpies of HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPyCD/limonene-IC-NF were 131, 54, and 229 J/g, respectively. The reduction in the enthalpy of HPβCD-NF, MβCD-NF, and HPyCD-NF after the complexation of limonene confirmed the complexation by displacing a certain number of water molecules in the cavity of CDs with limonene.47

Structural Characterization of Nanofibers. Figure 6b shows the X-ray diffraction (XRD) patterns of HPβCD-NF, MβCD-NF, HPyCD-NF, HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPyCD/limonene-IC-NF. HPβCD, MβCD, and HPyCD are known to be amorphous molecules.

Figure 5. TGA thermograms of (a) limonene, HPβCD-NF, and HPβCD/limonene-IC-NF; (b) limonene, MβCD-NF, and MβCD/limonene-IC-NF; and (c) limonene, HPyCD-NF, and HPyCD/limonene-IC-NF.
The observed amorphous peak in HPβCD-NF, MβCD-NF, and HPγCD-NF further confirms the native amorphous nature of HPβCD, MβCD, and HPγCD molecules. Similarly, an amorphous pattern was also observed for HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF. More importantly, the absence of a limonene peak in HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF confirmed the formation of the complex.

The chemical structures of limonene, HPβCD-NF, MβCD-NF, HPγCD-NF, HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF were investigated by FTIR spectroscopy (Figure 6c). The characteristic absorption peaks of CDs observed at around 1030, 1080, 1157, 1638, 2925, and 3401 cm⁻¹ are due to the coupled C–C and C–O stretching vibrations, antisymmetric stretching vibration of the C–O–C glycosidic bridge, H–OH bending, C–H stretching, and O–H stretching, respectively. The characteristic peaks of limonene are seen at 888 cm⁻¹ (C=C), 1379 cm⁻¹ (CH₃ symmetric bending), 1446 cm⁻¹ (CH₂ bending), 1650 cm⁻¹ (C=C stretching of the exocyclic double bond), and 2850 and 2965 cm⁻¹ (symmetric and antisymmetric stretching of sp² and sp³ CH groups). Although the characteristic peaks of limonene and CDs overlap in some regions (1650, 2850, and 2965 cm⁻¹), the intensity increased with the addition of limonene. In addition, the characteristic peaks of limonene at 1378 and 1446 cm⁻¹ are observed in HPβCD/limonene-IC-NF and MβCD/limonene-IC-NF. These results showed the presence of limonene in CD/limonene-IC-NFs.

Release Study. The release results of the limonene from CD/limonene-IC-NFs as a function of temperature over 3 h are shown in Figure 7a–c. The release of limonene from CD/limonene-IC-NFs was increased with increasing temperature from 37 to 75 °C. The variations in the temperature induce the increase in the diffusion coefficient of the molecules. The total amount of released limonene was in the order of MβCD/limonene-IC-NF > HPγCD/limonene-IC-NF > HPβCD/limonene-IC-NF. On the other hand, the rate of release was
highest from HPγCD/limonene-IC-NF and lowest from MβCD/limonene-IC-NF at 37, 50, and 75 °C.

The better preservation of limonene shown in 1H NMR and TGA data might be the reason for the large amount of limonene released from MβCD/limonene-IC-NF. The higher stability of the complex formed in MβCD/limonene-IC-NF as shown in the TGA results could be responsible for the slower release of limonene from the nanofibers. Moreover, the superior size fit between modified βCDs compared to that of HPγCD might be another reason for the quick release of HPγCD/limonene-IC-NF. As discussed above, the computational modeling studies are well correlated with the experimental results where the complexation energy was calculated in the order of MβCD/limonene-IC > HPβCD/limonene-IC > HPγCD/limonene-IC.

TGA measurements were also performed to investigate the long-term release of HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF, and the results are summarized in Figure 8. Most of the limonene present in MβCD/limonene-IC-NF was not released (remaining 75% (w/w)) at the end of 100 days because of the high stability of MβCD/limonene-IC-NF as discussed previously. Limonene (51% w/w) was released from HPβCD/limonene-IC-NF at the end of 100 days. The comparatively lower stability of the complex in HPβCD/limonene-IC-NF could be the reason for the greater amount of limonene released compared to that of MβCD/limonene-IC-NF. The amount of released limonene was 88% (w/w) for HPγCD/limonene-IC-NF at the end of 100 days. These results might be due to the excellent size fit between HPβCD and MβCD with limonene and correlate well with the short-term release experiments in which HPγCD/limonene-IC-NF released limonene quickly compared to HPβCD/limonene-IC-NF and MβCD/limonene-IC-NF. In previous studies conducted by our group, most of the vanillin, allyl isothiocyanate, and geraniol that was loaded was lost during electrospinning and storage without CD-IC in electrospun PVA nanofibers. Here, we observed that a considerable amount of limonene remained in the nanofibrous matrix of HPβCD/limonene-IC-NF and MβCD/limonene-IC-NF even after a long storage time (100 days) on the shelf.

Antibacterial Activity. Essential oils are known to have antibacterial activity resulting from the terpene constituents disrupting the bacterial membrane in both Gram-negative and Gram-positive bacteria. Figure 9 presents the effect of limonene and CD/limonene-IC-NFs on the growth inhibition rate of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). CD/limonene-IC-NFs possessed strong antibacterial activity against E. coli and S. aureus that was even greater than that of limonene. The higher antibacterial activity of CD/limonene-IC-NFs could be due to the higher solubility and preservation rate of limonene in CD/limonene-IC-NFs. Namely, limonene, HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF exhibited 77 ± 1.0, 79 ± 0.9, 93 ± 1.2, and 90 ± 0.7% against E. coli and 70 ± 0.6, 96 ± 1.3, 97 ± 1.5, and 85 ± 0.9% against S. aureus, respectively. MβCD/limonene-IC-NF had the strongest antibacterial effect for E. coli and S. aureus, which could be due to the better preservation of limonene shown in 1H NMR, TGA, and HS GC–MS. Furthermore, it is known that Gram-positive bacteria have a thin layer of peptidoglycan, whereas Gram-negative bacteria have a thick lipid bilayer on the outside. Therefore, Gram-positive bacteria are much more susceptible to antibacterial agents than are Gram-negative bacteria. These results clarified the higher antibacterial activity of CD/limonene-IC-NFs against S. aureus compared to that of E. coli that is expected to inhibit the growth of bacteria in the mouth causing bad breath as an oral care strip.

Here, by using electrospinning we present the production of free-standing nanofibrous webs from three modified CDs (HPβCD, MβCD, and HPγCD) and volatile essential oil, limonene, without using a polymer matrix. The solubility of limonene was increased with all CD types as seen in phase solubility diagrams. The stoichiometry of the complexes was 1:1 from the computational and experimental studies. SEM images revealed that all CD/limonene-IC-NFs had bead-free morphology. TGA, DSC, and XRD confirmed the formation of the complexes. HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF preserved up to 43, 80, and 38% of limonene according to the 1H NMR and TGA results, respectively. The short-term (3 h) release of limonene evaluated at three different temperatures (37, 50, and 75 °C) via HS GC–MS revealed that MβCD/limonene-IC-NF released much more limonene as a result of the better preservation compared to that of HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF. Long-term open air (100 days at RT) release tests of limonene from CD/limonene-IC-NFs were performed as well. Much less limonene was released from MβCD/limonene-IC-NF when compared to HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF in long-term open air release tests. These results confirm the highest stability of limonene in HPβCD/limonene-IC-NF, MβCD/limonene-IC-NF, and HPγCD/limonene-IC-NF at RT for 100 days.
the complexes in M/CD/limonene-IC-NF among the three CD/limonene-IC-NFs web sample. In addition, the rate of release in short- and long-term release studies was also slow in the case of M/CD/limonene-IC-NF, which is likely due to the higher stability of limonene in M/CD/limonene-IC-NF than in HP/CD/limonene-IC-NF and HPyCD/limonene-IC-NF as mentioned in the TGA results. Antibacterial activity test results indicated that CD/limonene-IC-NFs presented high antibacterial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Finally, it was observed that CD/limonene-IC-NFs were dissolved in water in a few seconds. In conclusion, the results suggested the potential of CD/limonene-IC-nanofibrous webs to be used in food or healthcare areas such as an oral care strip for improving oral hygiene while freshening the breath, owing to the large amount of preserved limonene with enhanced solubility and high antibacterial activity.

■ ASSOCIATED CONTENT

Supporting Information, and videos showing the solubility of limonene and CD/limonene-IC-NFs presented and available as free of charge via the Internet at The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jafc.6b02632.

Phase solubility diagrams and 1H NMR results (PDF)
Videos showing the solubility of limonene (MPG)
Videos showing the solubility of CD/limonene-IC-NFs (MPG)

■ AUTHOR INFORMATION

Corresponding Author
*Tel: +90-3122908987. E-mail: tamer@unam.bilkent.edu.tr.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We express our special thanks to Dr. Asli Celebioglu for the electrospinning of cyclodextrin nanofibers. Z.A., Z.L.Y., and F.K.S. are grateful for TUBITAK-BIDEB, and Z.A. and Z.L.Y. are also grateful for TUBITAK (project no. 213M185) for Ph.D. scholarships. T.U. acknowledges The Scientific and Technological Research Council of Turkey (TUBITAK)-Turkey (project no. 213M185) for funding this research. T.U. and E.D. acknowledge support from The Turkish Academy of Sciences - Outstanding Young Scientists Award Program (TUBA-GEBIP), Turkey. The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

■ REFERENCES

