Polymer-free electrospun nanofibers from sulfobutyl ether-7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole

Zehra Irem Yildiz, Asli Celebioglu, Tamer Uyar*

Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey

1. Introduction

Cyclodextrins (CDs) are cyclic oligosaccharides having either 6, 7, or 8 glucopyranose units linked by α-1,4 linkages in the cycle and are named as α-CD, β-CD and γ-CD, respectively (Szejtli, 1998). CDs have truncated cone-shaped molecular structure which can form supramolecular structures by forming non-covalent host-guest inclusion complexes with variety of molecules (Szejtli, 1998). The inner side of the CD is relatively hydrophobic and the outer side is hydrophilic which makes CDs to form inclusion complexes with various hydrophobic molecules including drug molecules (Ogawa et al., 2015). One of the main problems in pharmaceutical industry is low-water-solubility of the drugs which result in decrease in bioavailability; nevertheless, the inclusion complex formation of drugs with cyclodextrins overcomes this problem and enhances the bioavailability of the drugs by increasing their water-solubility. But, native cyclodextrins (α-CD, β-CD and γ-CD) have lower water-solubility which sometimes restricted their use in pharmaceutical formulation. Yet, chemically modified CD derivatives such as hydroxypropyl-CD, methylated-CD, sulfobutyl ether-CD have much higher water solubility. Sulfobutyl ether-beta-cyclodextrin (SBE7-β-CD, Captisol®) is sulfobutyl derivative of β-CD with a 6.6 average degree of substitution (Fig. 1a). This substitution decreases nephrotoxicity of cyclodextrin while increases its aqueous solubility to a great extent (Beig et al., 2015). One of the distinctive features of SBE7-β-CD is extension of the cavity due to repulsion of end groups' negative charges which provides stronger binding to the drug molecules (Beig et al., 2015). The other feature is the presence of negative charges in SBE7-β-CD at physiological pH which makes binding with a positively charged drug molecule possible. Therefore, the inclusion complex formation with SBE7-β-CD has advantages for drug delivery systems. The application of inclusion complexes of CDs with drug may be widen by the incorporation of such molecular complexation systems.
systems into highly porous nanofibrous carrier matrix. Electrospinning, being one of the versatile methods for nanofiber production, enables us to produce nanofibers and nanofibrous webs having high surface area to volume ratio, nano-scale porosity and design flexibility for chemical/physical functionalization, etc. Due to their exceptional properties, it has been shown that electrospun nanofibers and their nanomats/nanowebs have potential use in various application areas in biotechnology, membranes/filters, food, agriculture, sensor, energy etc. (Aytac et al., 2015, 2017; Noruzi, 2016; Sahay et al., 2012; Uyar and Kny, 2017). Electrospun nanofibers could also be used for drug delivery systems for targeted delivery and/or for inhibition of drug adverse side effects with controlled release (Aytac et al., 2015; Mendes et al., 2016; Wang et al., 2016).

Electrospun polymeric nanofibers incorporating drug-cyclo-dextrin inclusion complexes (CD-ICs) have shown to be promising matrix for drug release systems (Aytac et al., 2015; Aytac and Uyar, 2017; Tonglairoum et al., 2013). For instance, Siafaka et al. (2016) has performed a study on the comparison of electrospun nanofibers and cyclodextrin as drug delivery system suggesting that both systems were good for drug delivery and showed similar efficiency. In our approach, we combine the efficiency of cyclodextrin inclusion complexation and high surface area of electrospun nanofibers for effective drug delivery system. Since electrospinning of nanofibers from small molecules is quite a challenge, mostly polymeric matrix is needed to obtain nanofibers (Uyar and Kny, 2017; Wendorff et al., 2012). Nevertheless, in our recent studies we achieved the electrospinning of nanofibers from pure cyclodextrin types (native CDs and modified CDs) (Celebioglu and Uyar, 2012, 2013; Celebioglu et al., 2014b) and CD-ICs (Celebioglu and Uyar, 2011; Celebioglu et al., 2014a, 2016; Aytac et al., 2016a,b) without using polymeric carrier matrix.

Sulfonamides are synthetic drugs known by their antimicrobial effects on different pathogenic microorganisms (Tačić et al., 2014). However, the use of these types of drugs is sometimes limited due to their poor water-solubility. The oxazole substituted sulfonamide is called as sulfisoxazole (Fig. 1a). Sulfisoxazole is a weak acid and slightly soluble in water. In this study, our aim was to develop nanofibrous sulfisoxazole-cyclodextrin inclusion complex system (Fig. 1a) in order to have fast-dissolving character and enhance the water-solubility of sulfisoxazole. Here, we prepared a highly concentrated aqueous solution of inclusion complex between sulfisoxazole and SBE_7-β-CD, and then, without using any polymeric matrix, sulfisoxazole/SBE_7-β-CD-IC was electrospun into nanofibrous structure to obtain a free-standing and handy solid form (Fig. 1b). We observed that sulfisoxazole/SBE_7-β-CD-IC nanofibrous web was readily soluble in water and the water-solubility of sulfisoxazole was enhanced significantly. Our findings

Fig. 1. (a) The chemical structure of sulfisoxazole and SBE_7-β-CD with a schematic representation of sulfisoxazole, SBE_7-β-CD and their IC, (b) Schematic representation of the electrospinning of sulfisoxazole/SBE_7-β-CD-IC NF.
suggested that sulfisoxazole/SBE₇-β-CD-IC in the form of nanofibrous webs can be quite useful in fast-dissolving tablet formulations for drug delivery.

2. Materials and methods

Sulfisoxazole (99%) was obtained from Sigma-Aldrich commercially. SBE₇-β-CD (Captisol[®], average degree of substitution = 6.6) was kindly donated by Cydex Pharmaceuticals Inc. (Kansas, USA). Potassium bromide (KBr, 99%, FTIR grade, Sigma-Aldrich), deuterated dimethylsulfoxide (d₆-DMSO, deuteration degree min. 99.8% for NMR spectroscopy, Merck) were used in this study. The water used was from a Millipore Milli-Q ultrapure water system. The materials were used as-received without any further purification process.

2.1. Preparation of solutions

The inclusion complex solution of sulfisoxazole with SBE₇-β-CD was initially prepared by 1:1 molar ratio of sulfisoxazole:SBE₇-β-CD. However, the molar ratio was changed to 1:2 (sulfisoxazole: SBE₇-β-CD) since electrospinning of uniform nanofiber cannot be obtained from 1:1 complex solution. Firstly, sulfisoxazole powder was dispersed in water then SBE₇-β-CD (200% w/v) was added to the dispersion. After that, the solution was stirred 24 h until clear and homogenous solution was obtained. Besides, to make comparison, highly concentrated SBE₇-β-CD (200% w/v) solution without sulfisoxazole was also prepared in water for the electrospinning of pure SBE₇-β-CD nanofibers. Sulfisoxazole/SBE₇-β-CD-IC was also obtained in the powder form in order to compare with sulfisoxazole/SBE₇-β-CD-IC NF in terms of the dissolving rate and water solubility. Sulfisoxazole powder was dispersed in water and then SBE₇-β-CD was added with the molar ratio of 1:2 (sulfisoxazole:SBE₇-β-CD). After 24 h stirring, this inclusion complex solution was frozen at -80°C for two days and then lyophilized in a freeze-dryer for 24 h to obtain sulfisoxazole/SBE₇-β-CD-IC powder.

2.2. Electrospinning of nanofibers

Sulfisoxazole/SBE₇-β-CD-IC solution was loaded to the 1 mL syringe fitted with a 0.4 mm inner diameter having needle. The syringe was placed horizontally on the syringe pump (KD Scientific, KDS 101) and the solution was pumped with rate of
0.5–1 mL/h. A grounded metal collector covered by aluminum foil was placed at 10–15 cm from the tip of the needle and the applied voltage was 10–15 kV. The electrospinning of pristine SBEγ-β-CD NF was performed with the same conditions/parameters. The electrospinning system was enclosed by Plexiglass box and electrospinning was performed at 25 °C and 30% relative humidity.

2.3. Measurements and characterizations

Phase solubility measurement was carried out according to Higuchi and Connors (1965). An excess amount of sulfisoxazole was added to 5 mL of aqueous solutions containing increasing concentration of SBEγ-β-CD ranging from 0 to 7.4 mM. The

Fig. 4. 1H NMR spectra of (a) sulfisoxazole powder, (b) SBEγ-β-CD NF and SBEγ-β-CD powder, (c) sulfisoxazole/SBEγ-β-CD IC NF, (d) sulfisoxazole/SBEγ-β-CD-IC powder.

Fig. 5. (a) TGA thermograms and (b) their derivatives of sulfisoxazole, SBEγ-β-CD NF and sulfisoxazole/SBEγ-β-CD-IC NF.
suspended measurements. Then, all suspensions were filtered by a 0.45 μm membrane filter to remove undissolved parts and all suspensions were diluted with water. Sulfoxazole concentration with respect to increasing SBE7-β-CD concentration was determined by UV–vis spectroscopy (Varian, Cary 100) at 260 nm. The result of phase solubility was given as a plot of the molar concentration of sulfoxazole versus molar concentration of SBE7-β-CD. The apparent stability constant (Ks) of sulfoxazole/SBE7-β-CD were calculated from the phase solubility diagram according to the following equation:

\[K_s = \frac{\text{slope}}{S_0 (1-\text{slope})} \]

where \(S_0 \) is the intrinsic solubility of sulfoxazole.

The samples of electrospun nanofibers (SBE7-β-CD NF and sulfoxazole/SBE7-β-CD-IC NF) were investigated morphologically by scanning electron microscopy (SEM, FEI-Quanta 200 FEG). Nanofibers were sputtered with 5 nm Au/Pd layer to minimize charging by PECS-682. Average fiber diameter (AFD) for both nanofibrous web was calculated from SEM images of 100 fibers.

The proton nuclear magnetic resonance (\(^1H\) NMR, Bruker D PX-400) system was used to determine molar ratio between sulfoxazole and SBE7-β-CD. In addition, SBE7-β-CD powder was also analyzed by \(^1H\) NMR to see if there is any change due to degradation in chemical structure of SBE7-β-CD after electrospinning process. 30 g L\(^{-1}\) concentration of pure sulfoxazole, SBE7-β-CD powder, SBE7-β-CD NF, sulfoxazole/SBE7-β-CD-IC NF and sulfoxazole/SBE7-β-CD-IC powder was dissolved in d6-DMSO separately for the preparation of solution for \(^1H\) NMR measurements.

Thermogravimetric analysis (TGA, TA Q500, USA) was carried out to determine the thermal properties of sulfoxazole, SBE7-β-CD NF and sulfoxazole/SBE7-β-CD-IC NF. These studies of the samples were performed from 25 to 600 °C with a heating rate of 20 °C/min under nitrogen gas flow.

Differential scanning calorimetry (DSC, TA Q2000, USA) was used to analyze inclusion complex formation between sulfoxazole and SBE7-β-CD. DSC measurement was performed for sulfoxazole, SBE7-β-CD NF, sulfoxazole/SBE7-β-CD-IC NF and sulfoxazole/SBE7-β-CD-IC powder under N\(_2\). Samples were equilibrated at 50 °C and heated to 220 °C with a rate of 10 °C/min.

X-ray diffraction (XRD) (PANalytical X’Pert powder diffractometer) measurements of pure sulfoxazole, SBE7-β-CD NF, sulfoxazole/SBE7-β-CD-IC NF and sulfoxazole/SBE7-β-CD-IC powder were recorded by applying Cu Kα radiation in a range of 2θ = 5–30° to determine the crystalline structure of the samples.

Fourier transform infrared spectrometry (FTIR, Bruker-VERTEX70) was used to obtain the infrared spectra of the samples. The samples were mixed with potassium bromide (KBr) and pressed as pellets. 64 scans were recorded between 4000 and 400 cm\(^{-1}\) at a resolution of 4 cm\(^{-1}\).

The water solubility of sulfoxazole is quite limited (Gladys et al., 2003). Here, excess amount of sulfoxazole (1.3 mg ml\(^{-1}\)) and sulfoxazole/SBE7-β-CD-IC NF and sulfoxazole/SBE7-β-CD-IC powder having the same amount of sulfoxazole were added to the water and stirred overnight. To make comparison, the solution of sulfoxazole with concentration of its water solubility (about 0.2 mg ml\(^{-1}\)) was also prepared and stirred overnight. After that, all samples were filtered through a 0.45 μm membrane filter to
remove undissolved sulfoxazole. Then, absorbance versus wavelength plots of four samples was obtained from UV–vis spectroscopy (Varian, Cary 100). In addition, to show the fast-dissolving character and water-solubility enhancement of the drug visually, the water is directly added to solid sulfoxazole, and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC powder samples. The videos and pictures have been taken in which, sulfoxazole powder and the sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF were placed into petri dishes separately and then, 5 mL of water was added to petri dishes. Then, to make comparison sulfoxazole/ SBE\(\gamma\)-\(β\)-CD-IC powder were also placed into a petri dish and then, 5 mL of water was added.

3. Results and discussion

3.1. Phase solubility studies

Phase solubility diagram plotted by sulfoxazole concentration versus SBE\(\gamma\)-\(β\)-CD concentration was given in Fig. 2 which corresponds that with increase in SBE\(\gamma\)-\(β\)-CD concentration, sulfoxazole concentration also increases. The complex showed linear trend (\(A_2\)-type) demonstrating 1:1 complex formation tendency of sulfoxazole and SBE\(\gamma\)-\(β\)-CD molecules. The stability constant (\(K_s\)) was calculated as 880 M\(^{-1}\) from the diagram according to Eqn. (1) and this value indicates better stability when compared to the previously done study on HP\(β\)CD by Gladys et al. (2003).

3.2. Electrospinning of SBE\(\gamma\)-\(β\)-CD NF and Sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF

Since the phase solubility studies indicated 1:1 (sulfoxazole: SBE\(\gamma\)-\(β\)-CD) complex formation tendency between sulfoxazole and SBE\(\gamma\)-\(β\)-CD, first, we prepared 1:1 molar ratio inclusion complex between sulfoxazole and SBE\(\gamma\)-\(β\)-CD by using highly concentrated SBE\(\gamma\)-\(β\)-CD (200% (w/v)) aqueous solution for the complexation. However, the electrospinning of uniform nanofibers from 1:1 molar ratio of sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC system was not successful under the applied electrospinning conditions/parameters. Hence, we optimized the CD-IC solutions and found out that sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC solution having 1:2 (sulfoxazole: SBE\(\gamma\)-\(β\)-CD) molar ratio was more favorable for the electrospinning of uniform nanofibers. As a control sample, pristine SBE\(\gamma\)-\(β\)-CD NF was also electrospin and we obtained bead-free and uniform nanofiber morphology for the free-standing nanofibrous web of SBE\(\gamma\)-\(β\)-CD. The optimized parameters for the electrospinning of the bead-free nanofibers from pristine SBE\(\gamma\)-\(β\)-CD and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC systems were given in detail in experimental section. The photos of free-standing and flexible electrospun nanofibrous samples were given in Fig. 3a–b for pristine SBE\(\gamma\)-\(β\)-CD NF and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF samples were given in Fig. 3c–d, respectively. From the SEM images, the average fiber diameter (AFD) for sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF and pristine SBE\(\gamma\)-\(β\)-CD NF was calculated as 650 ± 290 nm and 890 ± 415 nm, respectively.

3.3. Structural characterization of SBE\(\gamma\)-\(β\)-CD NF and Sulfoxazole/ SBE\(\gamma\)-\(β\)-CD-IC NF

The structural characterization of SBE\(\gamma\)-\(β\)-CD NF, sulfoxazole/ SBE\(\gamma\)-\(β\)-CD-IC NF and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC powder samples was done by using the different methods. \(^1\)H NMR spectroscopy was used to obtain molar ratio of sulfoxazole to SBE\(\gamma\)-\(β\)-CD in the sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF matrix and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC powder. The \(^1\)H NMR spectra of sulfoxazole, SBE\(\gamma\)-\(β\)-CD powder, SBE\(\gamma\)-\(β\)-CD NF, sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC powder were evaluated (Fig. 4a–d). Protons of SBE\(\gamma\)-\(β\)-CD NF and as-received powder SBE\(\gamma\)-\(β\)-CD were appeared in the range of \(\delta\) 1.5–5.8 ppm which is correlated with previous literature (Devasari et al., 2015; Kulkarni and Belgamwar, 2017). As shown in Fig. 4b, the \(^1\)H NMR spectra of SBE\(\gamma\)-\(β\)-CD powder and SBE\(\gamma\)-\(β\)-CD NF present the same characteristic shifts which indicated that the electrospinning process did not cause any chemical degradation to the structure of SBE\(\gamma\)-\(β\)-CD. The molar ratio was calculated from integration of peak ratio between peak of sulfoxazole at around 7.35 (H-a) and SBE\(\gamma\)-\(β\)-CD peak at around 5.00 ppm (H-1) as 0.28:1.00 for both sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC powder (Fig. 4c–d). This suggests that more than 50% (w/w) of initial sulfoxazole amount is preserved for both nanofibrous web and powder form. The thermal decomposition of sulfoxazole, SBE\(\gamma\)-\(β\)-CD NF and sulfoxazole/SBE\(\γ\)-\(β\)-CD-IC NF were investigated by thermal gravimetric analysis (TGA) (Fig. 5). The weight losses below 100 °C belong to the water loss for all samples. Pure sulfoxazole decomposition occurred between 190–400 °C while SBE\(\gamma\)-\(β\)-CD NF exhibited main degradation between 250 and 500 °C. Along with this, thermal decomposition of sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF started at 220 °C and continued up to 500 °C. There are two differences between SBE\(\gamma\)-\(β\)-CD NF and sulfoxazole/SBE\(\gamma\)-\(β\)-CD-IC NF degradation. First one is the small step starting at 220 °C which possibly belong to the sulfoxazole. The shifting of thermal decomposition onset of sulfoxazole from 190 °C to 220 °C showed the IC formation between sulfoxazole and SBE\(\gamma\)-\(β\)-CD. The second difference is the intensity of peak at 300 °C which also proves the formation of inclusion complexes.

DSC is one of the widely used techniques to evaluate IC formation between CD and guest molecule in such a way that the melting point of guest molecules is not observed if guest molecules fully complexed within the CD cavities (Uyar et al., 2006). The DSC scans of pure sulfoxazole, SBE\(\gamma\)-\(β\)-CD NF, sulfoxazole/SBE\(\γ\)-\(β\)-CD-IC NF and sulfoxazole/SBE\(\γ\)-\(β\)-CD-IC powder were given in Fig. 6. The pure sulfoxazole DSC scan exhibited a melting point at

Fig. 9. Water solubility diagram of sulfoxazole with concentration of its water solubility (green), excess amount of sulfoxazole (pink), sulfoxazole/SBE\(\γ\)-\(β\)-CD-IC NF having the same excess amount of sulfoxazole (blue), sulfoxazole/SBE\(\γ\)-\(β\)-CD-IC powder having the same excess amount of sulfoxazole (purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
197°C, whereas no melting point was observed for sulfisoxazole for the samples of sulfisoxazole/SBE7-β-CD-IC NF and sulfisoxazole/SBE7-β-CD-IC powder. The DSC results further confirm that the sulfisoxazole molecules are fully complexed with SBE7-β-CD in the samples of sulfisoxazole/SBE7-β-CD-IC NF and sulfisoxazole/SBE7-β-CD-IC powder.

The crystalline structures of pure sulfisoxazole, SBE7-β-CD NF, sulfisoxazole/SBE7-β-CD-IC NF and sulfisoxazole/SBE7-β-CD-IC powder were investigated by XRD to show the evidence of IC formation between sulfisoxazole and SBE7-β-CD. Sulfisoxazole is a crystalline material having a sharp diffraction peaks at different 2θ values; however, the XRD pattern of SBE7-β-CD NF, sulfisoxazole/SBE7-β-CD-IC NF and sulfisoxazole/SBE7-β-CD-IC powder are very similar which have amorphous structures. The sulfisoxazole/SBE7-β-CD-IC NF and sulfisoxazole/SBE7-β-CD-IC powder do not show any diffraction peaks of sulfisoxazole (Fig. 7). In other words, XRD results revealed the IC formation between sulfisoxazole and SBE7-β-CD in the samples of sulfisoxazole/SBE7-β-CD-IC NF and sulfisoxazole/SBE7-β-CD-IC powder. The XRD result suggests that sulfisoxazole molecules are isolated from each other by entering into SBE7-β-CD cavities and cannot form any crystalline aggregates. Since drugs in crystalline forms are more stable, their solubility decreases (Babu and Nangia, 2011); however, CD-IC formation prevent crystallization of drugs. Therefore, the solubility of sulfisoxazole increases by SBE7-β-CD-IC formation since the crystallization of sulfisoxazole was prevented as confirmed by the XRD pattern.

The presence of guest molecule in structure and the formation of inclusion complexes between host and guest molecule can be proved by FTIR analysis. The FTIR spectra of pure sulfisoxazole, SBE7-β-CD NF and sulfisoxazole/SBE7-β-CD-IC NF are represented in Fig. 8. The FTIR spectrum of sulfisoxazole displayed salient peaks at 876-688 cm⁻¹ range (C–H bending), at 1347 cm⁻¹ (SO₂ stretching); at 1326 cm⁻¹ (aromatic ring stretching); at 1597 cm⁻¹ (C=C stretching); at 1632 cm⁻¹ (NH₂ deformation vibrations). The FTIR spectrum of SBE7-β-CD showed a broad peak at between 3015 and 3760 cm⁻¹ (O–H stretching vibration); a peak at 2931 cm⁻¹ (C–H stretching vibrations); peaks at 1159 cm⁻¹ and 1043 cm⁻¹ (C–H and C–O stretching vibrations). Sulfisoxazole peaks were overlapped by CD peaks which makes the identification of each compounds complicated at the spectra of inclusion complex nanofibers. However, the sharpest absorption peak of sulfisoxazole at about 1597 cm⁻¹ corresponding to C–H stretching vibration causes increase in intensity at that wavelength of inclusion complex nanofiber. This result suggested that sulfisoxazole is present in inclusion complex nanofibers.
3.4. Water-solubility of Sulfoxazole/SBEβ-CD-IC NF

As mentioned Section 2.3, excess amount of sulfoxazole (1.3 mg mL\(^{-1}\)) and sulfoxazole/SBEβ-CD-IC NF and sulfoxazole/SBEβ-CD-IC powder having the same amount of sulfoxazole were added to water. In order to make comparison, the solution of sulfoxazole with concentration of its water solubility (about 0.2 mg mL\(^{-1}\)) was also prepared to see water-solubility enhancement. The plot (Fig. 9) shows that the solutions of sulfoxazole with 0.2 mg mL\(^{-1}\) concentration and of sulfoxazole with 1.3 mg mL\(^{-1}\) demonstrated peak at almost the same absorbance. On the other hand, sulfoxazole/SBEβ-CD-IC NF sample solution having 1.3 mg mL\(^{-1}\) of sulfoxazole concentration showed peak at 10 times higher absorbance. This shows that the solubility of sulfoxazole was increased by 10 times with sulfoxazole/SBEβ-CD-IC NF formation. As seen from Fig. 9, sulfoxazole/SBEβ-CD-IC powder also enhances water solubility of sulfoxazole due to formation of CD-IC, however sulfoxazole/SBEβ-CD-IC NF shows higher absorbance than sulfoxazole/SBEβ-CD-IC powder. The high surface area to volume ratio, high porosity of nanofibers structure contribute to the enhancement of water solubility of the drug (Sebe et al., 2015); therefore, the water solubility enhancement in sulfoxazole/SBEβ-CD-IC NF become higher compared to sulfoxazole/SBEβ-CD-IC powder. The fast-dissolving property and water-solubility enhancement of the sulfoxazole in sulfoxazole/SBEβ-CD-IC NF and sulfoxazole/SBEβ-CD-IC powder were also visually proven (Video S1, Video S2 and Fig. 10). After addition of 5 mL water to the petri dishes, while sulfoxazole/SBEβ-CD-IC NF was dissolved immediately, the dissolution of sulfoxazole/SBEβ-CD-IC powder took place a little bit slower than sulfoxazole/SBEβ-CD-IC NF sample and the pure sulfoxazole remain undissolved. This clearly showed the fast-dissolving property of sulfoxazole/SBEβ-CD-IC NF along with highly-increased water-solubility of sulfoxazole by sulfoxazole/SBEβ-CD-IC NF formation.

4. Conclusions

In this study, free-standing and easily handled nanofibrous web of sulfoxazole/SBEβ-CD-IC was successfully produced by using electrospinning technique. The electrospun sulfoxazole/SBEβ-CD-IC nanofibrous web has shown the fast-dissolving property as well as the providing enhanced water-solubility to sulfoxazole. Based on our results, it is concluded that SBEβ-CD is a good candidate to form ICs with sulfoxazole to increase its water-solubility to a great extent. Moreover, electrospinning of nanofibers from sulfoxazole/SBEβ-CD-IC system having high surface area to volume ratio and nano–scale porosity provides fast-dissolving property. In brief, electrospinning of nanofibers/nanowebs from drug/CD-ICs systems may provide novel approaches for enhanced water-solubility and fast-dissolving tablet formulations for drug delivery systems.

Acknowledgements

T. Uyar acknowledges The Turkish Academy of Sciences – Outstanding Young Scientists Award Program (TUBA-GEBIP)-Turkey for partial support of the research. Z. I. Yildiz thank to TUBITAK-BIDEB for the Ph.D. scholarship.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ijpharm.2017.04.047.