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a b s t r a c t

Rats move their whiskers to acquire information about their environment. It has been observed that they
palpate novel objects and objects they are required to localize in space. We analyze whisker-based object
localization using two complementary paradigms, namely, active learning and intrinsic-reward rein-
forcement learning. Active learning algorithms select the next training samples according to the hypoth-
esized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward
reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior
converges to the one that optimizes the learning process. We show that in the context of object localiza-
tion, the two paradigms result in palpation whisking as their respective optimal solution. These results
suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration
and can guide future research to seek the underlying neuronal mechanisms that implement them. Fur-
thermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and
can improve the active exploration of their environment.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rats are curious animals that use their vibrissae (whiskers) to
explore their environment. Several stereotypical behaviors have
been observed, such as periodic whisking (Gao et al., 2001; Berg
and Kleinfeld, 2003) and touch-induced palpation (Grant et al.,
2009). Recently, whisking behavior has been implemented in ro-
botic whiskers in order to discriminate textures and ascertain
three-dimensional shapes (Solomon and Hartmann, 2006; Evans
et al., 2010; Sullivan et al., 2012). Palpation of novel objects, which
is the focus of the current work, is observed when rats encounter
such an object and can be characterized as a high-frequency
small-amplitude whisker motion, always remaining in the vicinity
of the object. It has received very little attention from the analyti-
cal and robotics-implementation fields (Gordon and Ahissar, 2011;
Gordon and Ahissar, 2012).

Here we show that two seemingly unrelated paradigms,
namely, active learning (Kolodziejski et al., 2009; Bhatnagar
et al., 2007; Govindhasamy et al., 2005) and intrinsic-reward rein-
forcement learning (Barto et al., 2004; Weng, 2004; Oudeyer et al.,
2007; Schmidhuber, 2010), predict that touch-induced palpation is
the optimal behavior for whisker-based object localization. We
then show that in the context of object localization, the two para-

digms are tightly related and suggest neuronal mechanisms that
may implement each.

Rats’ vibrissae system serves as a unique model for neurosci-
ence research due to its relative simplicity. Although its dynamics
becomes more complex as investigations progress (Knutsen and
Ahissar, 2009; Simony et al., 2010), it can be approximated as a
one-dimensional process, controlling a single positional variable,
the whisker’s azimuth angle using a single motor variable, whisker
velocity. Then whisker-based object localization can be defined as
learning the forward model (Jordan, 1992; Shadmehr and
Krakauer, 2008) of touch, i.e. the ability to predict at what angle
and velocity a touch signal, due to contact between the whisker
and object, will occur. The question we address is ‘‘how should a
single-whisker rat move its whisker in order to optimally localize
an object?’’ In other words, what is the rat’s policy that optimizes
learning of the forward model of touch, where optimization is
performed with respect to the learned function (see below).

This scenario can be formulated using the active learning jargon
in the following way (Adejumo and Engelbrecht, 1999; Dasgupta
and Hsu, 2008). The rat samples the sensory-motor space (angle
and velocity) and wishes to correctly label each point as touch or
no-touch. We show that object localization is equivalent to learn-
ing a two-dimensional linear separator (albeit in bounded space
due to angle and velocity limitations). Hence, the goal is to find
the sampling policy that minimizes the error between the pre-
dicted linear separator and the correct one.

In reinforcement learning (RL) notations (Kolodziejski et al.,
2009; Bhatnagar et al., 2007; Govindhasamy et al., 2005), the states
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are the angle of the whisker and the touch information, and the ac-
tion is whisker velocity. Hence in an actor-critic setup (Bhatnagar
et al., 2007), the critic learns the values of each angle/touch point,
whereas the actor adjusts the probabilities of choosing a specific
whisker velocity given an angle/touch state. In conventional RL,
the reward is given by an extrinsic function that is adjusted to
the desired goal, e.g. maximal reward for arriving at a specific loca-
tion. However, in the current implementation of RL, the object
localization component, i.e. a learner that learns the forward model
of touch, provides intrinsic reward (Barto et al., 2004; Weng, 2004;
Oudeyer et al., 2007; Schmidhuber, 2010), here taken to be the pre-
diction error. Thus, the goal is to find the actor that optimizes
learning object localization, i.e. minimizes the generalization error
of the forward model of touch. In other words, the intrinsic-reward
RL converges to a behavior that results in fast increase in accurate
prediction of touch events.

The paper provides a unifying formalism for both approaches,
with respect to object localization via whiskers. This allows the di-
rect comparison of the two approaches, which exhibit remarkably
similar results, namely, palpation behavior. It further enables a for-
mulation of the connection between the two paradigms, also ex-
plored here. A biologically-plausible neuronal network that
implements the proposed models is also presented and discussed.
Finally, the synergistic analysis presented here can facilitate the
application of either techniques in robotic whisker-base sensors
(Solomon and Hartmann, 2006; Evans et al., 2010; Sullivan et al.,
2012).

2. Materials and methods

2.1. Whisker model

We use a simplistic model, in which the rat can control the veloc-
ity of the whisker (Simony et al., 2010). Furthermore, the whisker
itself is rigid, i.e. it cannot bend and hence its azimuth angle cannot
pass the ‘‘object’s angle’’. Thus, the whisker angle is bounded by the
object position and depends on the initial whisker angle, i.e. if it is
initially more retracted (smaller angle) or more protracted (larger
angle) than the object (angular) position. For simplicity, we assume
the whisker to be always more retracted than the object; hence the
object is touched only upon protraction of the whisker. This
assumption is validated by numerous videos of freely moving rats,
in which they encounter novel objects upon protraction in the vast
majority of cases. We also assume that the velocity is bounded, due
to physical constraints.

2.2. Learning a linear separator in sensory-motor space

We formulate the whisker-based object localization setup

mathematically: h 2 hmin; b
h i

is the angle of the whisker, hmin is

the fully retracted angle, and b is the (angular) position of the ob-

ject, with b 2 hmin; hmax
h i

; hmax being the fully protracted angle. This

means that the object can appear anywhere inside the whisker
field. We assume that the whisker is always more retracted than
the angular position of the object, and hence bounded by it.
a 2 amin; amax

� �
is the bounded velocity of the whisker.

The dynamics of the system are given by

h0tþ1 ¼ ht þ at ð1Þ

htþ1 ¼max hmin;minðb; h0tþ1ÞÞ ð2Þ

where h0tþ1 is the attempted angle and Eq. (1) guarantees that the
angle stays within the bounds. The velocity at is the action that
should be optimized (see below). The touch signal is then given by

Btþ1 ¼
1 ht 6 b and h0tþ1 > b

�1 otherwise

�
ð3Þ

This means that if the whisker tried to move from one side of the
object to the other side of the object, there is a touch signal of 1,
otherwise B ¼ �1. One can then define a linear separator of touch,
u ¼ fuh;ua;ubg, such that

uhht þ uaa� ub ¼ uT xt ¼ 0 ð4Þ

where xt ¼ fht ; at ;�1g is a point in 2-dimensional ðx1 ¼ h; x2 ¼ aÞ
space, where x3 ¼ �1 is a constant added to accommodate for the
linear separator’s threshold ub. The linear separator, u, delineates
the boundary between the labeled touch and no-touch regions in
the two-dimensional ðh; aÞ space.

The setup can then be re-formulated as follows: (i) The agent’s
policy determines, based on past knowledge, the action at; (ii) the
dynamics are determined via Eqs. (1) and (3); (iii) the agent re-
ceives fhtþ1;Btþ1g; (iv) based on the action, angle and touch signal,
the agent updates its approximation of the linear separator. (v)
t ! t þ 1, return to (i). The goal is then restated as: find a policy
such that the touch-signal linear separator, u, is learned optimally.

2.3. Perceptron-based active learning

The setup described in the previous section can be modeled by a
perceptron, which is a mathematical construct that receives many
inputs and has a single output. The perceptron output is the result
of applying a (usually) non-linear or threshold function on the
weighted sum of its inputs. In the object localization scenario,
the perceptron inputs and output are the two-dimensional point
(h, a) and touch signal, respectively.

The problem is also related to selective sampling, a branch of
active learning (Settles, 2009), in which one can select whether
to label the sample or not. Since the labeling is usually costly,
the aim is to select which samples to label. We briefly describe a
perceptron-based active learning algorithm taken from Dasgupta
et al. (2009), which actively selects which samples to label and
exhibits an exponential speedup compared to random selections.

Let x be a point on the N-dimensional unit hypersphere,PN
i¼1x2

i ¼ 1. Let u be a vector on the same sphere, such that
y ¼ signðuT xÞ is the label of each point x on the sphere. In each
time-step, t, there is a hypothesis vector, v t . The goal of active
learning is to find u, i.e. change the hypothesis such that v t ! u.

In selective sampling, one is presented with random samples
from the unit sphere, xt . The algorithm presented in Dasgupta
et al. (2009) only labels samples obeying:

jvT
t xt j < qt ð5Þ

where xt is the sample at time t; v t is the current hypothesis/classi-
fier and qt is an adaptive threshold that decreases as learning pro-
gresses. It was shown that the update rule of the hypothesis, v t ,
given by

v tþ1 ¼ v t � 2ðvT
t xtÞxt ð6Þ

results in a number of required labels that is exponentially smaller
for a given error, compared to random labeling. The crux of the
algorithm in Dasgupta et al. (2009) is the adaptive threshold qt ,
which adapts according to the following rule: if predictions were
correct on R consecutive labeled examples, then set qtþ1 ¼ qt=2, else
qtþ1 ¼ qt . This means that the adaptive threshold decreases as the
error in the prediction decreases.

2.4. Reinforcement active learning

Reinforcement learning (RL) deals with the question of finding
an actor that maximizes (future) accumulated rewards. In our
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setup, which we call autonomous reinforcement active learning
(ReAL), the goal is to optimize on-line supervised learning, in the
sense that generalization error of the learner is minimized (Gordon
and Ahissar, 2011, 2012). The heuristics behind ReAL is ‘‘you learn
more by making (corrected) mistakes’’. To this end we define the
reward to be the prediction error (Schmidhuber, 1990), i.e. the dif-
ference between the expected label and the correct label. This pre-
diction error is used to adjust the learner parameters, but here it
also serves as the intrisic reward signal (Barto et al., 2004; Weng,
2004; Oudeyer et al., 2007; Schmidhuber, 2010).

In the RL implementation, we set the states to be whisker angle
and touch label, st ¼ fht ;Btg, Eq. (3); and the actions are set to be
whisker velocity, at . The object localization learner is the forward
model of touch, i.e. predicting contact Btþ1, based on the current
angle and velocity, st ; at . It is denoted by LðBtþ1jst ; atÞ and is simu-
lated in the ReAL model as a feed-forward multi-layer neural net-
work with backpropagation learning algorithm. We implement the
incremental Natural Actor Critic (iNAC) algorithm (Bhatnagar et al.,
2007), and add an intrinsic reward that is the square of the forward
model of touch prediction error:

rtþ1 ¼ LðBtþ1jht ; atÞ � Btþ1½ �2 ð7Þ

We briefly summarize the iNAC algorithm below (Bhatnagar et al.,
2007; Gordon and Ahissar, 2011, 2012). The rat selects an action,
at , at each time t using a randomized stationary policy, designated
as the actor: pðajsÞ ¼ Prðat ¼ ajst ¼ s; ktÞ, where kt are the actor
parameters to be tuned. The Natural Actor-Critic algorithm uses
the compatible functions, defined as: wðst; atÞ ¼ rkpðatjstÞ.

The critic, bV pðst ; mtÞ attempts to learn the value function, i.e. the
value of each state, by tuning the parameters mt using the function
/ðstÞ ¼ rm

bV pðst ; mtÞ. Moreover, the reinforcement learning algo-
rithm uses the temporal difference (TD) learning, here taken to
be dt ¼ rt �bJtþ1 þ bV pðst ; mtÞ � bV pðstþ1; mtÞ, where bJt is the estimated
average reward, which is also updated. The update rules are sum-
marized below:

bJ tþ1 ¼ ð1� ntÞbJt þ ntrt ð8Þ

mtþ1 ¼ mt þ atdt/ðstÞ ð9Þ

wtþ1 ¼ I � atwðst ; atÞwðst; atÞT
h i

wt þ atdtwðst ; atÞ ð10Þ

ktþ1 ¼ kt þ btwtþ1 ð11Þ

where nt is the average reward update rate, wt are the advantage
parameters, at;bt are the learning rates of the critic and actor,
respectively, and their step-size schedule satisfy the condition that
the critic converges faster than the actor (Bhatnagar et al., 2007).

In the ReAL algorithm, we have introduced a delicate interplay
between three approximators, namely the actor, critic and learner.
The actor, through the selection of the appropriate action and the
state-change induced by the system dynamics, determines which
new example is presented to the learner. This, in turn, produces
the prediction error which not only modifies the learner weights,
but also determines the reward, which the critic now assimilates
into its value and advantage approximators. The critic completes
the ReAL loop by determining the TD error that updates both the
critic and the actor.

3. Results

3.1. Object localization via active learning

We first describe the modifications we implemented on the
perceptron-based active learning algorithm described above (taken
from Dasgupta et al. (2009)), in order to accommodate the

whisker-based object localization setup. These are: (i) action-based
active learning, also known as membership queries (Settles, 2009);
(ii) the whisker space is not on the unit sphere, but is bounded both
in the whisker angle and the whisker velocity Knutsen et al., 2008
and; (iii) only one dimension (velocity) is under complete control,
while the other (angle) is only partially controlled through the
velocity and the whisker dynamics, Eq. (1). We then present
numerical simulations of the modified algorithm, exhibiting palpa-
tion behavior.

3.1.1. Action-based active learning
One defines action-based active learning as follows: all pre-

sented samples are labeled, with their respective costs, but one
has some control over the next sample. Hence, the aim is to select
such actions so as to sample next at the correct position. The ana-
lytical derivation is presented below.

In action-based active learning, one chooses an action that
influences the next sample, such that it will fulfill Eq. (5), i.e.
choose an action that generates

xtþ1 ¼ nt þ dt ð12Þ

where nt is uniformly sampled from the space fnt 2 RNjvT
t nt

¼ 0; jjntjj2 ¼ 1g and dt is uniformly sampled from the space
fdt 2 RNj jjdt jj2 6 qtg. Here nt denotes a random vector sampled
from the hyperplane orthogonal to the current hypothesis, v t , while
dt denotes the distance from the hypothesis.

Eq. (12) means that one must find a random vector in the hyper-
plane orthogonal to the current hypothesis, with some added noise
proportional to the adaptive threshold, qt . This implies that instead
of a random presentation of samples followed by labeling accord-
ing to the selection condition, one performs an action such that the
sample generated meets the selection condition.

3.1.2. Bounded space
The action-based adaptation was done straightforwardly in the

unit sphere scenario. However, in the unit sphere, all samples lie
on the sphere, by default. In the whisker-based object localization
setup, both the whisker angle and velocity are bounded and do not
obey the unit sphere constraint. Rather, they lie in a bounded re-
gion in the 2D plane. Hence, a new sample generated by Eq. (12),
xtþ1 ¼ fhtþ1; atþ1g, may fall outside the angle/velocity boundaries
and must be modified to comply with those boundaries. This pre-
sents several new challenges.

The first is that the linear separator hypothesis does not neces-
sarily pass through the origin, requiring learning an additional
parameter, namely, the separator threshold, ub. This is easily
achieved by adding another auxiliary dimension to the linear sep-
arators, v and u, as described in Eq. (4). Second, there is a possibility
of getting stuck on the boundaries, due to an updated hypothesis,
v tþ1 that lies entirely outside the bounded space. This is solved
by taking the suggested next sample to be near the suggested sep-
arator, yet always within the bounded domain. Furthermore, only
approximated separators that lie inside the space are allowed. Fi-
nally, if the separator is still stuck on the boundaries, one must re-
start the algorithm. While this increases the learning time,
practically it happens rarely and does not reduce the algorithm’s
exponential speedup.

3.1.3. Velocity dependent control
In the angle/velocity scenario, only one dimension is under di-

rect control (velocity) while the other (angle) is determined by
the velocity and the dynamics. This actually simplifies the algo-
rithm since the random vector nt , drawn from the hyperplane
orthogonal to the linear separator hypothesis, has only one free
parameter instead of two. However, new pitfalls arise, namely,
the required velocity atþ1 can either lie outside the bounds or be
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zero. The former is overcome by restricting the velocity such that
the next time-step whisker angle (according to Eq. (1)) lies within
the angle bounds. The latter is overcome by prohibiting velocities
below a certain threshold.

3.1.4. Numerical results
In the object localization context, action-based active learning

means that if the appropriate whisker motion is performed, the ob-
ject, i.e. linear separator in the angle/velocity space, will be learned
exponentially faster than random motion. The main feature of the
algorithm in Dasgupta et al. (2009), i.e. the adaptive threshold,
then amounts to palpation of the object, meaning motion that be-
comes closer and closer to the object boundary.

Fig. 1 shows an implementation of the algorithm, where the ob-
ject is located at b ¼ 0. Fig. 1a shows the object localization map-
ping, intensity coding the touch (white) and no touch (black)
areas. The trajectory is marked in phase space by gray crosses,
whose size is correlated to the time step (larger crosses, larger t).
The trajectory starts randomly for a hundred time steps, Fig. 1c un-
til it first reaches the object and then it ‘‘palpates’’ it by going back
and forth between touching and not touching it. The learned sepa-
rator converges from a random initial state (gray dashed line) to
the correct separator (gray solid line), Fig. 1a, where Fig. 1b shows
the exponential decrease in the separator error, computed as the
distance between the true separator and approximated one,
distance ¼ 1� v � u=jvjjuj. Fig. 1d shows the dynamical nature of
the adaptive threshold.

3.2. Intrinsic-reward reinforcement learning of object localization

In the incremental natural actor critic (iNAC) implementation of
whisker object localization, we use the same touch signal as in Eq.
(3), which may originate from a touch sensor (Gordon and Ahissar,
2011, 2012). The touch signal is binary, i.e. either there is touch
with an object or there is not, where the strength of the touch that
depends on its radial position along the whisker (Birdwell et al.,
2007) and on the force of the whisker muscles (Simony et al.,

2010), is neglected for simplicity. Furthermore, we have used a
continuous state (h) and continuous action (a) RL algorithm, with
an actor that depends on the touch information (and not the cur-
rent angle) and on the previous action, pðatjBt ; at�1Þ (for full details,
see Gordon and Ahissar (2012)).

Fig. 2a shows the object localization mapping for an object in
the middle of the whisker field, similar to Fig. 1a. As can be seen
it is confined to a small region around the object location and
has a step-like shape, where far from the object there is no touch
information and moving towards the object results in touch infor-
mation, since the whisker motion is blocked by the object. In this
example, the whisker always started from full retraction and the
object was encountered during protraction. Hence, the generaliza-
tion error of the mapping is computed only on one side that is
determined by the initial state and the position of the object.

The actor used in this scenario was a non-Markov actor, in
which the action depends on the current touch information and
the previous action, Fig. 2b and c. Examining the trajectory of the
learned actor, Fig. 2(e:upper, black), reveals that this actor actively
learns the linear separator, similar to Fig. 1. This palpation whisk-
ing, i.e. alternating between touching and not touching the object,
drastically increases the accumulated rewards (prediction errors)
Fig. 2e:lower. The learning curve in Fig. 2d shows an initial wors-
ening and then a drastic improvement in the generalization error.
The former is due to the fact that the actor has learned to protract
until an object is reached, avoiding the initial random exploration
observed in Fig. 1c, which results in delayed learning of the large
no-touch area. Following object-touch, which occurs after a small
number of time steps, the palpation behavior learns the linear sep-
arator of the touch and no-touch areas and thus drastically reduces
the generalization error. The random actor, on the other hand ini-
tially learns the large no-touch area, but due to a small number of
touch events, fails to converge on the right linear separator that de-
fines the object location.

Fig. 2b shows the action probabilities when there was no con-
tact with the object and Fig. 2c when there was contact. This actor
demonstrates a negative feed-back behavior, where it protracts
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Fig. 1. Example of object localization as a 2D velocity dependent control of active learning. (a) Intensity coded map of true linear separator (black = �1, white = 1). Gray lines
show approximated separator for initial (dashed), after 100 steps (dotted) and final after 1000 steps (solid). Gray crosses mark querying coordinates, where larger font-sizes
indicates more advance time steps. (b) Distance measure between true and approximated separator. (c) Trajectory of whisker as a function of time, showing a change from
semi-random wide-angle whisking to palaption whisking around the object. (d) Adaptive threshold as a function of time.
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when not touching an object and retracts when it touches.
However, the fact that the protraction is smaller than the retrac-
tion allows sampling the two sides of the linear separator, namely,
after a large retraction follows two smaller protraction, the first
without touch and the second with, indicated by the arrows in
Fig. 2e:upper, inset. Furthermore, the probability of slightly pro-
tracting after a large protraction that induced touch, a non-Mar-
kovian feature, allows sampling of the most non-linear feature,
namely, the intersection point of the linear separator with the ob-
ject position at h ¼ b; a ¼ 0. Together, these unique features enable
the active learning of the object localization linear separator.

3.3. Active learning and reinforcement learning with prediction error
reward

We wish to connect the active learning setup as described
above, to reinforcement learning in which the reward is propor-
tional to the prediction error. Active learning consists of two steps,
namely the ‘‘active’’ step in which the next sample is actively se-
lected and the ‘‘learning’’ step in which the approximated separa-
tor is updated according to the sampled data. We show below that
given the update rule, Eq. (6), expressed as an update of the
approximated separator by a prediction or learning error �t , the
next sample that maximizes this prediction error obeys the active
learning rule of sampling near the separator.

We wish to emphasize the maximization–minimization aspect
of the connection between active and reinforcement learning: the
update stage is designed to decrease the prediction error, whereas
the active stage is shown below to select a sample that maximizes
the prediction error. The rationale behind this architecture is that
by actively going to places of maximal prediction error, their correc-
tion in the update stage will have the greatest effect. We begin from
the update rule, given in (6), which is implemented only for a mis-
classification, i.e. when there is a prediction error given by:

�ðxtÞ ¼ vT
t xt

� �
uT xt
� �

< 0 ð13Þ

where the bB ¼ vT
t xt term is the (misclassified) prediction and the

B ¼ uT xt term is the correct labeling. The goal of active learning is

to choose the next sample xt such that uTv tþ1 > uTv t , i.e. the overlap
between the hypothesis and true separators increases:

uTv tþ1 � uTv t ¼ �2 vT
t xt

� �
uT xt
� �

¼ 2j�ðxtÞj > 0 ð14Þ

Restating this in the RL notation, one can set the reward to be the
absolute value of the prediction error, rt ¼ j�ðxtÞj. The goal is then
to find the next sample that maximizes the reward:

@rt

@xi
t

¼ @j�ðxtÞj
@xi

t

¼ � vT
t xt

� �
ui � v i

t uT xt
� �

¼ 0

) ui
X

j

v j
tx

j
t þ v i

t

X
j

ujxj
t ¼ 0 ð15Þ

Let us define qt , which measures the distance of the sample from
the hypothesized separator, and Dt , the (unknown) error vector as:

qt ¼ vT
t xt ð16Þ

Dt ¼ u� v t ð17Þ
Plugging these definitions into (15) results in:

v i
t

X
j

v j
t þ Dj

t

� �
xj

t þ v i
t þ Di

t

� �X
j

v j
tx

j
t ¼ 0) qt

¼
�
P

jD
j
tx

j
t

2þ
P

jD
j
t=
P

jv
j
t

ð18Þ

Hence, for the optimal next position, Eq. (18) suggests that the next
sample should be dependent on the current error in approximation.
For the case of bounded space considered here, we have
jxj 6 1; jv j 6 1 that result in

jqtj 6
P

jD
j
t

			
			

2þ
P

jD
j
t

			
			

ð19Þ

Furthermore, this solution indeed maximizes the update:
@2rt

@xi
tð Þ

2 ¼ �4v i
tu

i > 0.

To summarize, since the approximation error is decreasing for
each update stage Eq. (6), this means that Eq. (19) is equivalent
to Eq. (12),.e. to maximize the prediction error one should choose

(a)

at

θ t

−1 −0.5 0 0.5 1
−1

−0.5

0

a t

at−1

(b)

−1 0 1
−1

−0.5

0

0.5

1

at−1

(c)

−1 0 1 0

0.05

0.1

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t

G
en

. e
rro

r

(d)
** **

* **

** **
**

** ** ** ** ** ** ** ** ** **
−0.5

0
0.5

θ t

(e)

50 60 70
−0.2
−0.1

0

t

a t

200 400 600 800 1000
0

500
1000

R
t

t

Fig. 2. ReAL of object localization. (a) Learned object localization mapping, B = 1 white, B = �1 black, gray crosses represent state-action trajectory. (b,c) Learned actor. (b)
Action probabilities if no touch occurred. (c) Action probabilities if touch occurred. (d) Generalization error averaged over 100 actors (shaded areas represent standard error)
for actors after 2000 ReAL episodes (black) and random actor (gray). (e) Upper panel: a typical trajectory of the learned (black) and random (gray) actors. Inset: part of the
trajectories, arrows indicate non-Markov behavior. Lower panel: Rt ¼
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s¼1rs is the accumulated reward of the same trajectory. Adapted with permission from Gordon and

Ahissar (2012).
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the next sample to be near the hypothesized separator (small q),
where the distance should decrease with decreasing approxima-
tion error. This shows that maximizing the reward, given by the
absolute value of the prediction error, is equivalent to active learn-
ing, i.e. the next position that maximizes the prediction error is
near the current approximated plane, where the distance is
bounded, with decreasing bound as the approximation becomes
better. Hence, active learning indeed relates to the maximization
of prediction error.

The analysis above assumed a one-step horizon from the rein-
forcement perspective, i.e. maximizing the next-step prediction er-
ror results in active-learning like policy. Generally, RL aims at
maximizing the accumulated and discounted future rewards, and
not a one time step reward. Thus, the converged actor of the ReAL
algorithm results in an even better policy than the one presented in
Eq. (19).

3.4. Neuronal network model

We present a biologically plausible neuronal network that
implements and connects the two models, namely, perceptron
based active learning (Sections 2.3 and 3.1) and reinforcement ac-
tive learning (Sections 2.4 and 3.2), Fig. 3.

3.4.1. Neuronal model for active learning
The model consists of two components, Fig. 3: one chooses the

next action to perform (Fig. 3(black)) and the other compares the
expected outcome (touch/no touch) to the actual sensory input
(Fig. 3(blue)). The choice of action (a) is affected by the current
whisker angle (h), a constant representing the neuronal threshold
(�1) and adaptively thresholded noise (d). These inputs are modu-
lated by synaptic weights, zh; zb; zd, respectively, that change during
learning. In turn, the current action and angle serve to predict the
expected outcome ðbBÞ. This is modulated by another set of learned
synaptic weights ðvh;va;vbÞ. The expected outcome is compared to
the actual sensory input (B), and generates a prediction error (�).
Following each palpation motion, synaptic weights throughout
the network are updated according to this error. The comparisons
are also aggregated (Fig. 3(green)) and used to inhibit the adaptive
threshold neuron (d).

More specifically, the implementation of the learning algorithm
is straightforward, as it is perceptron based, Fig. 3(blue arrows). Eq.

(6) is implemented as Hebbian learning that occurs only on a mis-
classification. The latter is calculated by comparing the predicted
and the correct classification, Fig. 3(red arrows).

A unique combination of temporal integration, integrate-and-
fire and accumulated inhibition implements the adaptive thresh-
old mechanism, Fig. 3(green box). More precisely, feeding the
classification error into multiple delay lines (Fig. 3(green box, black
arrows)) allows the integration of classification success informa-
tion over time. R delay lines impinge on an integrate-and-fire neu-
ron such that only if all inputs fire, the target neuron fires (an AND
neuron) (Fig. 3(green box, circled X)); this enables the detection of
R consecutive correct classifications. The output of this neuron
inhibits a noisy neuron, d, in an asymmetric accumulative fashion,
i.e. it inhibits d when it fires, but does excites, or ds-inhibits when
silent. This exemplifies a mechanism of an adaptive decreasing
threshold. In other words, only when R ‘‘delayed’’ correct classifica-
tions coincide, the noisy neuron is inhibited and reduces its influ-
ence on the action neuron. We speculate that the function of d can
be implemented by 5-HT neurons, whose ability to modulate
whisking had been demonstrated (Hattox et al., 2003; Harish and
Golomb, 2010).

The action-based active learning and velocity dependent control
results in a unique determination of the next action, Fig. 3(black).
The following relations can be derived from Eqs. (1) and (12):

atþ1 ¼ zhht þ zdd� zb ð20Þ

zh ¼ �vh=ðvh þ vaÞ zd ¼ 1 zb ¼ �vb=ðvh þ vaÞ ð21Þ

Thus, the next action is determined according to the current angle
and the adaptive threshold. More precisely, the next action is cho-
sen such that the overall state is near the ‘‘predicted’’ separator;
however, this requires an inverse model, i.e. given the required an-
gle, what is the action to take. The inverse model that directs action
towards the predicted separator is exemplified by zh; zb. On top of
this, the adaptive threshold modulated noise is added to allow
exploration, via the d neuron.

The entire network works as follows, Fig. 3: classification is pre-
dicted according to the ‘‘blue’’ network; it is compared to the real
classification; if there is a misclassification, the ‘‘blue’’ and ‘‘black’’
connections are updated according to Hebbian learning rules and
Eq. (21), respectively (see below); if the classification is correct R
consecutive times, the noise neuron is inhibited via the ‘‘green’’
network; the next action is selected according to the ‘‘black’’ (de-
layed) network.

The mechanism described above works on multiple dynamical
regimes, related to the sensory-motor cycles (not whisking cycles).
The first is the sub-cycle regime, which determines the dynamics
of the whisker angle-change after implementing a given action (Si-
mony et al., 2010); this regime lies in the 3–7 ms domain. The sec-
ond is the cycle dynamical regime, meaning the influence of one
action on the next one via an intermediate touch event, or con-
versely, the perception of one touch event on the perception of
the next, via an intermediate action. This regime of a single sen-
sory-motor loop lies in the range of 15–20 ms (Mitchinson et al.,
2007; Deutsch et al., 2010; Nguyen and Kleinfeld, 2005). The last
dynamical regime is across-cycle, in which consecutive classifica-
tions accumulate and change the adaptive threshold; it lies in
the 50–200 ms domain.

3.4.2. Neuronal model for ReAL
The reinforcement active learning neuronal implementation is

also straightforward (Doya, 2007; Schultz, 2010). The learner is
identical to the perceptron-based network. The critic is a value
approximator that can be modeled using radial-basis neural net-
work that updates its weights according to the TD-error. The actor,
which is a neural controller, can be modeled with a feed-forward

a

1

d

B̂

B

X

v
av

bv

z

bz
dz

Fig. 3. Neuronal network implemented active learning model. Nodes represent
variables and arrows represent weights. Blue arrows indicate prediction network;
red arrows indicate error network and black arrows indicate action network.
Arrows/round-tips indicate excitatory/inhibitory connections; blue box on top of
arrows indicate delay lines, where the size of the box indicate the amount of delay;
green box include R = 3 delay lines and a circled X indicate a thresholded integrate-
and-fire neuron, i.e. an AND neuron.
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neuronal network that also updates its weight according to the
same TD-error. These neuronal models have a well established bio-
logical analogues.

3.4.3. Common neuronal characteristics
The common characteristic of the perceptron network and the

ReAL model is that the connectivities of the action networks,
Fig. 3(black), are modified according to the prediction error. This
relation was presented in the previous section and its mechanistic
ramifications are novel. In the perceptron network it means that
the prediction error not only changes, via Hebbian learning, the
perceptual network v but also the action network, z, in a cycle-
by-cycle basis. This requires a non-trivial learning mechanism in
which the error signal in one network affects another network’s
weights. In the ReAL implementation, the prediction-error action
learning means that the reward system, instantiated by the critic,
receives the percepetual prediction error as an input; in turn it
sends the TD-error to modify the actor’s weights.

4. Discussion

The active learning field has mainly focused on labeling streams
of data, wherein the cost of labeling is high (Settles, 2009). Appli-
cations to real sensory modalities have focused on the visual sys-
tem, in which studies have shown that primates and humans
indeed utilize policies with principles based on active learning (Itti
and Koch, 2000). However, analytical and numerical analysis of
optimal active touch has been scant.

On the other hand, a new emergent field is that of intrinsic re-
ward RL (Barto et al., 2004; Oudeyer et al., 2007), also known as
theory of creativity (Schmidhuber, 2010), and is widely used in
developmental robotics (Weng, 2004). This field assumes that
rewards come from learning, usually the predictions of state/ac-
tion/reward relations. A new typology is suggested in (Schmidhu-
ber, 2010), where each implementation should describe the
predictors, the intrinsic reward and the RL controllers.

However, most of the applications focused on high-level cogni-
tive and behavioral aspects (Weng, 2004; Oudeyer et al., 2007;
Schmidhuber, 2010). Here, we applied the ReAL paradigm to low
level, sensory-motor space which consists of the whisker angle
and velocity. Furthermore, previous examples focused on visual in-
puts (Weng, 2004; Oudeyer et al., 2007), whereas applications of
intrinsic reward to the tactile domain are few (Gordon and Ahissar,
2011).

The active learning algorithm is based on a perceptron learning
rule and as such has intrinsic biologically-oriented reasoning and
can be easily implemented using neuronal network models. The
unique feature of such networks are the combined learning of both
the predictor- and the action-networks via a single common signal,
namely, the prediction error. The prediction network changes
according to the ubiquitous Hebbian learning rule, whereas the ac-
tion determining network has a more complex learning rule. Nev-
ertheless, these learning networks are tightly connected.

Furthermore, the active learning algorithm mandates an adap-
tive threshold whose strength relates to the cumulative prediction
successes. Such a mechanism was suggested above that combines
delay lines and integrate-and-fire neurons, both abundant in the
central nervous system (Dan and Poo, 2006; Sjstrm et al., 2003).
Another important ingredient is the ‘‘noise generator’’ that be-
comes inhibited as success increases. Noise generation is thought
to occur in the basal ganglia and is crucial for explorative behavior
(Tumer and Brainard, 2007; Kao et al., 2008; Sober et al., 2008;
Andalman and Fee, 2009), such as the one considered here.

However, a crucial mechanism in the adaptive threshold is the
asymmetric cumulative learning, i.e. the fact that the noise is

diminished in an across-cycle dynamical regime; it does not in-
crease back after it was inhibited as long as the perceptual task
continues. For perceptual processes in the order of a few hundreds
of ms, mechanisms involving GABAB inhibition (Golomb et al.,
2006) and/or neuromodulatory modulation could apply. As 5-HT
involvement in the modulation of whisking had been indicated
(Hattox et al., 2003; Harish and Golomb, 2010), it becomes a lead-
ing candidate for the implementation of this mechanism.

In the context of the perceptual task of object localization, one
must also define within the model when the task ends (Ahissar
and Knutsen, 2008; Knutsen and Ahissar, 2009; Horev et al.,
2011). In the perceptron based model, we hypothesize that the de-
creased noise generation plays the role of perceptual confidence,
i.e. when the explorative factor of the model decreases below a cer-
tain threshold, the agent perceives the object with enough confi-
dence and the task ends. Combined with the hypothesis that the
mechanism of the decreased adaptive threshold is mediated via
neuromodulators (Ahissar et al., 1996; Bahar et al., 2004), e.g.
5-HT in this case, it raises the prediction that 5-HT may correlate
with perceptual confidence. More precisely, that the levels of
5-HT in the relevant areas change monotonically as the task
progresses and reaches a certain level when the animal ‘‘reports’’
its decision, e.g. goes to the correct sipper (Knutsen and Ahissar,
2009; Horev et al., 2011). This speculation is in line with previous
suggestions (Friston et al., 1991; Rogers et al., 1999).

The intrinsic-reward reinforcement learning model describes
the emergence of behavior and thus promotes mainly develop-
mental predictions, i.e. behaviors and their underlying neural cir-
cuitry during the critical period of development in pups. One
straightforward prediction is that pups do not palpate novel ob-
jects immediately, i.e. once their whiskers are grown enough to
reach objects, the model predicts that their first behavior should
be quasi-random. This prediction has been recently supported in
Grant et al. (2011).

Furthermore, the converged behaviors are strongly dependent
on the experience of the pup, thus changing pups’ experience
should produce different emergent behaviors. For example, par-
tially paralyzing the mystacial pad muscles during development,
i.e. reducing their responsiveness and contracting strength, should
result in a different object palpation when they are adults, even if
at adulthood there is no paralysis. Similarly, affecting the sensory
input during development, e.g. via pharmacological manipulations
along the sensory pathway, should result in markedly different
behaviors in adulthood. Furthermore, preventing whisker-object
touch during development, e.g. by attaching plastic cones to the
snout, should result in the lack of palpation behavior during adult-
hood. Another option is to place the entire home-cage in a puff-ball
material, such that the pups never encounter a hard, inflexible ob-
jects. In such a manner, the palpation behavior observed in normal
rats should be drastically changed.

In order to verify these predictions, monitoring their whisking
behavior is mandatory along the developmental axis. Two options
are possible, determined on the available technology and design of
the home cage. The first is continuous monitoring of the pup within
the home cage during its development. This option is very difficult
due to the stringent requirements of the specialized video and
tracking system of the whiskers. The second option is to extract
the pups from their home cage in a relatively high frequency and
monitor them in a controlled environment. This type of analysis
of pup whisker behavior is in its infancy (Grant et al., 2011), but
the rapid advancement of tracking techniques can expedite the
performance of the proposed experiments.

The RL model also predicts novel neural circuitry during devel-
opment. In order to facilitate rewarding prediction error, there
should be a strong input connectivity to the rewarding system from
internal model areas, e.g. barrel cortex. The model predicts that
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this connectivity should be stronger during development to allow
convergence of the stereotypical whisking behaviors apparent in
adult rats. Furthermore, the conveyed information in these connec-
tions should code error signals (Shadmehr and Krakauer, 2008;
Lalazar and Vaadia, 2008). The anatomical and functional circuitry
of the developing pup is mostly unknown, yet the underlying infra-
structure for the proposed curiosity loops should be evident to cor-
roborate the proposed model.

5. Conclusion

Rats palpate novel objects with their whiskers in order to ascer-
tain their location, shape and texture. This behavior was repro-
duced using two compatible approaches, namely, active learning
and reinforcement learning with intrinsic reward. We have modi-
fied a perceptron-based active learning algorithm (Dasgupta
et al., 2009) to accommodate membership queries (Settles, 2009),
bounded space and velocity-dependent control. Our analysis
shows that object palpation, i.e. alternating between touch and
no touch, learns the proper linear separator exponentially faster
than random actions.

Additionally, we have augmented the incremental Natrual Actor
Critic (Bhatnagar et al., 2007) reinforcement learning algorithm
with reward that is equal to the square of the prediction error of
learning the forward model of touch (Gordon and Ahissar, 2011).
This resulted in a remarkably similar behavior to that of the afore-
mentioned active learning algorithm. We have then showed that
indeed the two approaches are tightly connected.

The two models presented and their resultant behavior, that is
highly reminiscent of rats palpation behavior, suggest that rats em-
ploy active learning and/or intrinsic reward principles when
exploring their environment. Further comparison of rat and model
behavior may reveal the dependency of update rules on correlation
of neuronal activities, behavioral factors and modulatory neuronal
systems (Ahissar et al., 1998; Ego-Stengel et al., 2001; Schultz,
2010).

Furthermore, the ReAL model suggests that such behavior is
learned, rather than innate (Weng, 2004), and is experience-depen-
dent. It thus predicts that pups’ initial contact-induced whisker
behavior would be distinctively different and much more random
than the structured palpation seen in adult rats.

Finally, developmental robotics (Weng, 2004; Asada et al.,
2009) can benefit from both proposed models as there are recent
attempts to employ artificial whisker-based sensors (Solomon
and Hartmann, 2006; Evans et al., 2010; Sullivan et al., 2012).
Implementing ReAL concepts in such robots may make them much
more efficient and autonomous.
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