Impact of Electricity Pricing Policies on Renewable Energy Investments and Carbon Emissions

A. Gürhan Kök, Kevin Shang, Şafak Yücel
Impact of Electricity Pricing Policies on Renewable Energy Investments and Carbon Emissions

A. Gürhan Kök
College of Administrative Sciences and Economics, Koç University, 34450 Sarıyer, İstanbul, Turkey, gkok@ku.edu.tr

Kevin Shang
Fuqua School of Business, Duke University, Durham, North Carolina 27708, kevin.shang@duke.edu

Şafak Yücel
McDonough School of Business, Georgetown University, Washington, DC 20057, safak.yucel@georgetown.edu

We investigate the impact of pricing policies (i.e., flat pricing versus peak pricing) on the investment levels of a utility firm in two competing energy sources (renewable and conventional), with a focus on the renewable investment level. We consider generation patterns and intermittency of solar and wind energy in relation to the electricity demand throughout a day. Industry experts generally promote peak pricing policy as it smoothens the demand and reduces inefficiencies in the supply system. We find that the same pricing policy may lead to distinct outcomes for different renewable energy sources due to their generation patterns. Specifically, flat pricing leads to a higher investment level for solar energy, and it can lead to still more investments in wind energy if a considerable amount of wind energy is generated throughout the day. We validate these results by using electricity generation and demand data of the state of Texas. We also show that flat pricing can lead to substantially lower carbon emissions and a higher consumer surplus. Finally, we explore the effect of direct (e.g., tax credit) and indirect (e.g., carbon tax) subsidies on investment levels and carbon emissions. We show that both types of subsidies generally lead to a lower emission level but that indirect subsidies may result in lower renewable energy investments. Our study suggests that reducing carbon emissions through increasing renewable energy investments requires careful attention to the pricing policy and the market characteristics of each region.

Keywords: renewable energy investment; electricity pricing policies; carbon emissions

History: Received November 16, 2014; accepted May 2, 2016, by Serguei Netessine, operations management.
Published online in Articles in Advance December 2, 2016.

1. Introduction
There is an unprecedented interest in growing renewable energy supply, particularly solar and wind energy, which provides electricity without generating carbon dioxide emissions. In an attempt to reduce carbon emissions and increase renewable energy supply, governments have launched various policies such as peak pricing for residential customers and net metering. Peak pricing (like other forms of time-of-use pricing) aims to smoothen the electricity demand throughout a day by charging higher prices at peak-usage times (i.e., daytime), therefore increasing the efficiency of electricity supply (Borenstein 2013). Net metering allows distributed generators (DGs, residential customers with rooftop solar panels) to sell their excess electricity back to the grid at retail prices (Kelly-Detwiler 2013). Coupled with the higher daytime prices of the peak pricing policy, net metering can increase residential solar energy investments. In fact, the Wall Street Journal (2013) defined net metering as a “backdoor subsidy for solar power,” and several experts confirmed this intuition (Mills et al. 2008, Ong et al. 2010, Darghouth et al. 2011). These claims are only based on the impact of peak pricing on residential solar investments and do not consider two important drivers of renewable energy investments. First, wind energy accounted for nine times more electricity output than solar energy in 2014 in the United States (EIA 2015) and has a very different electricity generation pattern than solar. Second, rather than DGs, utility firms dominate the investment in energy supply chains. In fact, as of 2012, more than 98% of U.S. renewable energy is generated in utility-scale facilities (SEIA 2013, EIA 2014a). In addition to the above net metering and peak pricing policies, governments also provide various direct subsidies (e.g., investment tax credits, cash grants) and indirect subsidies (e.g., carbon tax) to increase renewable energy investments. However, there seems to be no clear understanding of the interaction between pricing policies and these subsidies and their joint effects on the investments of utility firms.

Utility firms need to determine investment levels for both conventional and renewable energy sources.
Investments in conventional sources remain significant because these sources have low investment cost and can provide more reliable electricity supply than renewables, despite their higher marginal generation costs and emissions. Moreover, recent technological breakthroughs, such as advanced coal power plants, have significantly reduced the generation costs and carbon emissions of conventional sources (Duke Energy 2016). Our objective is to investigate the impact of electricity pricing policies on the investment levels of renewable and conventional energy sources from the perspective of utility firms. We consider both solar and wind energy sources because they account for the majority of the renewable energy output. We explore the following questions. Which pricing policy (i.e., either flat pricing or peak pricing) leads to a higher renewable energy investment, lower carbon emissions, and a higher consumer surplus when these two competing sources are present? What are the key characteristics of energy sources that a government should consider when designing a pricing policy if its long-term goal is to increase the share of renewable energy in the total energy output? What are the effects of direct and indirect subsidies? Answering these questions is not straightforward because the amount of carbon emission depends on not only the portfolio of energy investments but also the electricity consumption shaped by the pricing policy.

There are several unique features of the renewable energy sources and electricity markets. First, the generation patterns of solar and wind energy are different throughout a day. They are nondispatchable, meaning that utility firms cannot generate electricity from these sources on demand. While the output of solar energy is generated mostly in the daytime, the output of wind energy heavily depends on geographical regions. In northern California, for example, the majority of wind energy is generated during the nighttime (NERC 2009, pp. 15–16), whereas in Texas, the wind energy is generated relatively evenly throughout the day. Second, these renewable energy sources are intermittent. That is, the exact output of a solar panel or a wind turbine cannot be precisely predicted. Third, the demand of electricity depends on the price sensitivity of customers (see Faruqui and Sergici 2010). Fourth, the marginal cost of generating electricity from the renewable energy sources is nearly zero. This fact has made the renewable sources the first choice for a utility firm to fulfill the demand (Economist 2013). Finally, different groups of renewable energy investors, i.e., utility firms and DGs, consider their own interests for investment. Thus the same pricing policy may lead to different responses from these investors.

We build a stylized model that incorporates the above features to investigate the impact of pricing policy (either flat or peak pricing) on energy investments of a utility firm that has an existing fleet of conventional generators. Given a pricing policy mandated by the government, the utility firm determines the electricity price and additional renewable and conventional energy investments to its existing fleet so as to maximize its profit. In particular, to satisfy the electricity demand, the utility firm uses its three sources in the increasing order of their marginal generation costs: first, it uses the renewable source, followed by the new conventional source. Any unmet demand is satisfied by the existing conventional fleet. The utility firm has an incentive to make additional investments in renewable and conventional energy sources as these new energy sources generate electricity with lower costs than its existing fleet.

On the issue of renewable energy investments, we determine the conditions under which flat or peak pricing leads to a higher renewable energy investment. We find that flat pricing leads to a higher investment in solar energy than peak pricing. This is because, under flat pricing, the electricity demand is higher during the daytime. Thus, the utility firm is motivated to invest more in solar energy to fulfill the increased demand as the solar energy is mainly generated in the daytime with negligible costs. While the industry experts and academics found that peak pricing can increase the investment level of solar energy for DGs (see Mills et al. 2008), our result complements this finding and suggests that flat pricing leads to a higher solar energy investment for utility firms. Given that the capacity investment for electricity in the United States is heavily dominated by utility firms, our result reveals an important insight for the solar energy industry. For wind energy, the impact of pricing policy depends on the generation pattern. For the geographical regions in which most wind energy output occurs at night, peak pricing leads to a higher wind energy investment than flat pricing. The intuition is similar: peak pricing leads to a higher demand at night, which can be fulfilled by the nighttime wind energy. Interestingly, flat pricing can still lead to a higher wind energy investment than peak pricing if a considerable amount of wind energy is generated during the daytime. We validate these insights through a case study by using real electricity generation and demand data obtained from the state of Texas. Our model also provides insights on the investment level of the new conventional energy source. For example, we find that, under peak pricing, the utility firm will increase its investment in the conventional energy source if the firm invests in the solar energy. This is because the increased nighttime demand under peak pricing can be fulfilled by the new conventional source rather than the solar energy.
Regarding carbon emissions, we show that flat pricing, which leads to a higher investment in solar energy, results in lower carbon emissions than peak pricing if the emission intensity of the new conventional source is sufficiently high. This result suggests an interesting insight: if the new conventional source has a low emission intensity, a higher renewable investment (which reduces the conventional energy investment) does not necessarily lead to lower carbon emissions, as more emissions may be produced from the existing fleet. We demonstrate this interesting phenomenon through an example based on the Texas data in Section 4.2. Finally, we investigate consumer welfare under these two pricing policies. We find that the consumer surplus is higher under flat pricing.

Our model can be used to evaluate the effect of governmental subsidy policies on reducing carbon emissions. We show that a direct subsidy for renewable investments, such as a cash grant or a tax credit, leads to a higher investment in renewable energy but not necessarily to lower emissions. Interestingly, an indirect subsidy policy, such as a carbon tax, may not lead to a higher investment in renewable energy, although it leads to lower emissions. This is because a carbon tax increases the generation cost of the existing fleet and the utility firm may prefer to invest more in a new conventional source that has a low emission intensity and can provide more reliable energy supply than the renewable source.

The rest of the paper is organized as follows. Section 2 summarizes the related literature. Section 3 provides preliminaries for the energy markets and utility firms. Section 4 analyzes the impact of pricing policies on the investment level of different energy sources, the carbon emission level, and the consumer surplus. Section 5 reports the impact of subsidies on the investment and carbon emission levels. Section 6 validates our findings by presenting a case study based on the Texas data. Section 7 discusses the extensions, and Section 8 concludes. All proofs are given in Online Appendix B (available as supplemental material at https://doi.org/10.1287/mnsc.2016.2576).

2. Literature Review

Our paper is related to three research streams: the peak pricing literature in economics and the sustainability and capacity-planning literatures in operations management. Analytical models in the peak pricing literature are surveyed by Crew et al. (1995). According to Borenstein (2013), economists are virtually unanimous in arguing that peak pricing improves the efficiency of electricity systems. Most papers in this stream consider a regulated monopoly firm that optimizes social welfare by determining the prices and the investment levels for energy sources. For example, Steiner (1957) characterizes the optimal investment and price levels in a deterministic setting. Crew and Kleindorfer (1976) study the investment levels for multiple generation technologies under demand uncertainty. Kleindorfer and Fernando (1993) determine the optimal prices and investment levels under supply uncertainty. Chao (2011) considers intermittent sources and characterizes the first-order conditions with respect to the electricity price and the renewable energy investment in the ex ante and ex post pricing schemes (i.e., the electricity prices are determined before and after the realization of demand and supply uncertainties). In a simulation study, he finds that the optimal investment level in renewable sources is higher in ex-post pricing than that in ex-ante pricing. Compared to the peak pricing literature, we consider a profit-maximizing utility firm instead of a social planner, as utility firms are no longer owned by the government.

Several authors study the impact of peak pricing policy on investments and emissions. For example, Mills et al. (2008), Ong et al. (2010), and Darghouth et al. (2011) consider investments in residential solar energy and conclude that these investments increase in response to peak pricing. We complement these studies by mainly considering capacity investments of utility firms. Furthermore, Holland and Mansur (2008) investigate the impact of real-time pricing (a more granular version of peak pricing) on carbon emissions in the short run, i.e., with exogenous investment levels and prices. They conclude that reducing the peak period demand leads to lower (higher, respectively) emissions if the peak period demand is fulfilled by carbon-intensive (carbon-free, respectively) generators. The difference of our paper is that, by endogenizing pricing and capacity investment decisions, we find that flat pricing usually leads to lower emissions.

On the empirical side of the peak pricing literature, many papers quantify the impact of peak pricing on the electricity demand. See, for example, Aigner and Hausman (1980), Filippini (1995), and Matsukawa (2001). Faruqui and Sergici (2010) survey 15 of these papers to examine how customers respond to electricity prices. They find that customers respond to the time-varying electricity prices by shifting their demand from the peak period to the off-peak period. Our demand model is motivated by these empirical findings as it accounts for the shift of electricity consumption between the peak period and the off-peak period under different pricing policies.

The operations management literature on sustainability has grown substantially in recent years. See Kleindorfer et al. (2005) and Drake and Spinler (2013) for a review. This literature spans a broad range of
topics including product designs (e.g., Plambeck and Wang 2009, Raz et al. 2013), production technology choices (e.g., İşlegen and Reichelstein 2011, Krass et al. 2013), transportation systems (e.g., Kleindorfer et al. 2012, Avci et al. 2015), supply chains (e.g., Cachon 2014, Sunar and Plambeck 2016), and government regulations (e.g., Kim 2015, Raz and Ovchinnikov 2015). Our paper is directly related to sustainability and operations of energy systems. In this domain, Lobel and Perakis (2011) study the feed-in-tariff policy for renewable energy sources in Germany and conclude that the subsidy levels are too low. In a similar vein, Alizamir et al. (2016) derive the optimal feed-in-tariff policy for renewable energy sources with a consideration of network externalities. Ritzenhofen et al. (2016) show that the feed-in-tariff policy is more cost effective than other policies aiming to increase investments in renewable energy. Wu et al. (2012) propose a new heuristic for operations of seasonal storage facilities. Wu and Kapuscinski (2013) find that curtailing renewable energy output can be helpful in dealing with intermittency. Zhou et al. (2016) study electricity storage with possibly negative electricity prices and derive the optimal disposal strategy. Zhou et al. (2014) propose an easily implementable policy for operating wind farms in the presence of storage facilities. Hu et al. (2015) focus on energy investments of a DG without considering utility firms and determine the optimal investment level for the DG.

We study a capacity allocation problem between a reliable (i.e., conventional) and an unreliable (i.e., renewable) source. For extensive reviews on supply reliability and capacity planning problems, see Yano and Lee (1995) and Van Mieghem (2003), respectively. As recent examples of this literature, Oh and Özer (2013) incorporate forecast evolution into capacity planning, and Wang et al. (2013) study capacity expansion and contraction in two competing technologies. In this stream of research, our paper is closely related to Aflaki and Netessine (2016), who study the competition between renewable and conventional energy sources. They analyze the impact of carbon tax in regulated and deregulated markets. They consider a single-period model with fixed prices and random demand and assume a two-point intermittency distribution. They show that the intermittency plays a crucial role in determining the environmental impact of carbon tax. We also study a similar issue. Unlike their model, we assume that the daytime and nighttime electricity consumptions are affected by the prices set by the utility firm, and our goal is to investigate the impact of pricing policy on the investment levels of both energy sources.

3. Model Preliminaries
We investigate the impact of electricity pricing policy on the capacity investments in renewable and conventional energy sources of a utility firm. We consider a long-term investment horizon (e.g., 20 years) and model a representative day with two periods indexed by subscript i: the first period is off-peak demand period or the nighttime ($i = n$), and the second period is peak demand period or the daytime ($i = d$). In addition, we consider two pricing policies: flat pricing and peak pricing. We use superscript j for a variable whenever we need to differentiate these two pricing policies, where $"j = \text{flat}"$ denotes flat pricing and $"j = \text{peak}"$ denotes peak pricing.

Pricing. Governments usually specify an electricity pricing policy as either flat pricing or peak pricing and allow utility firms to determine the electricity price through a negotiation process (Lazar 2011). We denote the consumer price of electricity as $p_i \geq 0$ in period $i \in \{n, d\}$. Under flat pricing, the utility firm has to determine the prices so that $p_n = p_d$. This constraint no longer applies if the government allows the use of peak pricing. Note that, in practice, the electricity prices are regulated. However, the peak pricing literature focuses on optimal prices (see Crew et al. 1995 for a review). This is because the optimal prices form the basis of regulated prices, which are the outcome of the negotiation between the regulators and the utility firms. Following the peak pricing literature, we also optimize over prices. Nevertheless, all of our results can be extended to the case when prices are regulated (fixed) as long as the price under flat pricing falls between the daytime and nighttime prices under peak pricing.

Demand. Electricity demand in the daytime period is $D_d(p_d, p_n) = a_d - \gamma p_d + \delta p_n$, and the nighttime demand is $D_n(p_n, p_d) = a_n - \gamma p_n + \delta p_d$, where $a_i > 0$ is the market size of period i; $\gamma > 0$ and $\delta > 0$ are the own and cross price sensitivities of the demand, respectively. We assume that the own price sensitivity is higher than the cross price sensitivity, i.e., $\gamma > \delta$, and that the market size is higher in the daytime period, i.e., $a_d > a_n$. In our model, the electricity demand refers to the amount of electrical energy demanded by consumers rather than the instantaneous consumption. Hence, the unit for demand is MW per the representative day, where “period” refers to the 12 hours of the peak or the off-peak demand period. That is, an MW period is equal to 12 MWhours. Furthermore, we note that the sum of the daytime and nighttime demand under this demand model is given as $a_n + a_d - (\gamma - \delta)(p_n + p_d)$. Thus, the sum of price levels determines the total demand level, as we discuss in detail following Lemma 1.
Intermittency. We use a random variable \tilde{q}_i to represent the intermittency factor of a renewable energy source in period i. Specifically, let k_i be the amount of investment in renewable energy. By convention in the literature, k_i is measured in MW. Here MW represents electricity “power,” measuring how much output can be instantaneously generated from an energy source. Thus, one can consider k_i as the instantaneous output rate. Running at the output rate of k_i MW for a period, the generated electricity “energy” is $k_i \tilde{q}_i$ MW-period per day. We use a two-point distribution for \tilde{q}_i:

$$\tilde{q}_i = \begin{cases} 1 & \text{with probability } q_i, \\ 0 & \text{with probability } 1 - q_i. \end{cases} \quad (1)$$

This intermittency form allows us to represent the generation pattern of a renewable energy source. For instance, the generation of solar energy reaches its peak during the day and is close to zero at night. Thus, we can set q_d greater than q_n and q_n close to zero to represent the solar energy source. On the other hand, if the wind energy output occurs evenly throughout a day (at night, respectively), then q_d is equal to q_n (q_n is greater than q_d, respectively). In Section 7.2, we show that our main insights are valid for a generally distributed \tilde{q}_i with a support of $[0, 1]$.

Supply. We assume that the utility firm maintains a fleet of conventional power plants and considers additional investments in new conventional and renewable sources. Since the renewable source does not consume any fuel to generate electricity, the generation cost is negligible. The generation cost of the newly invested conventional source, such as an advanced coal power plant, is higher than that of the renewable energy source but lower than that of the existing fleet (Duke Energy 2016). According to the so-called merit order dispatch rule, different types of power plants are brought online in the ascending order of their variable operating costs. Thus, in our model, the renewable energy source is dispatched into the grid first to satisfy the demand, followed by the newly invested conventional source, and then finally by the existing fleet.

Figure 1 plots the power plants in Texas in the increasing order of variable operating costs. Each circle in the graph corresponds to a specific plant with its variable operating cost on the vertical axis and the cumulative system capacity up to this plant on the horizontal axis. The size of a circle is proportional to the capacity of the plant that it represents. We pose two remarks about this graph. First, the instantaneous demand rate never exceeded 68 GW in 2010; thus, there is considerable excess capacity in the system. Second, the cumulative capacity starts from 9 GW, which is the wind energy capacity that incurs zero variable operating costs.

Costs. We consider two types of costs: the electricity generation cost and the investment cost. In line with Figure 1 and the merit order dispatch rule, the utility firm incurs a cost of $g(x)$ for generating x units of electricity from its existing conventional sources, where $g(x)$ is given as

$$g(x) = \frac{C_1}{3} x^3 + \frac{C_2}{2} x^2 + C_3 x + C_4. \quad (2)$$

We assume that the cost coefficients C_1, C_2, C_3, and C_4 are positive so that this function is convex and a generalization of the widely used linear and quadratic forms in the literature.\(^1\)

\(^1\) We note that this functional form provides an adjusted R^2 value of 0.9958 when it is fitted to the generation cost curve, which can be obtained from Figure 1.
For the new conventional source, let v denote the unit generation cost. Note that the generation cost from the existing conventional fleet is characterized by a polynomial function (i.e., $g(x)$), whereas the generation cost from the new conventional source is a linear function. This is because $g(x)$ is an approximation for the generation cost of different power plants, such as coal and nuclear plants (shown in Figure 1). Thus, the generation cost is convex and increasing in the total capacity. On the other hand, the new conventional source refers to a certain type of power plant, whose generation cost increases linearly. Finally, the renewable energy source incurs zero generation costs.

The investment cost of the renewable source is given as $c_r(k_r) = \beta_r k_r$, where k_r is the investment level in MW. Similarly, the investment cost of the new conventional source is $c_c(k_c) = \beta_c k_c$, where k_c is the investment level in MW. We assume linear investment cost functions that are consistent with the peak pricing literature (e.g., Crew et al. 1995). Practitioners often use a linear cost rate to estimate the investment expense for each type of energy source. Since the newly invested equipment has a fixed life expectancy, the investment cost function can be viewed as the average investment cost per representative day.

We present the estimates of cost and intermittency parameters for various generation sources in Table 1. For the conventional sources, we normalize the intermittency factor to 1 for both periods. For the renewable energy sources, we compute the intermittency factor based on the electricity generation data of Texas given in the case study of Section 6. The estimation of the investment and generation cost rates are explained in Online Appendix D.

Carbon Emissions. We normalize the emission intensity of the existing conventional fleet to 1; that is, generating 1 unit of electricity from the existing fleet emits 1 unit of carbon dioxide. The emission intensity of the newly invested conventional source is denoted by e. We assume that $e \leq 1$; that is, the new conventional source is less polluting than the existing fleet. This assumption is consistent with Environmental Protection Agency regulations that specify the emission limit for the newly invested conventional source to be almost half of the existing emission level (Plumer 2013). A similar assumption is used in Aflaki and Netessine (2016). Finally, the renewable energy source does not consume any fossil fuels to generate electricity, so its emission intensity is assumed to be zero. In accordance with the merit order dispatch rule described above, we define the expected carbon emissions (ECE) due to electricity generation as

$$ECE = \sum_{i \in [n,d]} E_q [(D_i(p_i, p_{-i}) - k_c - k_r) + e \min(k_c, (D_i(p_i, p_{-i}) - k_c))]$$

where $E[\cdot]$ denotes the expectation operator, q_i is the intermittency factor in period i, and $(x)^+ = \max(x, 0)$. The first term in the brackets is the emission amount due to the existing fleet, and the second term is the expected emission amount from the new conventional source. In (3), we subtract capacity investments (e.g., k_r) given in MW from the demand level $D_i(p_i, p_{-i})$ given in MW/period per the representative day. In this equation, one can view k_c and k_r as energy output with a unit of MW/period per day. The usage of the energy units in this way is consistent with that of the literature (see Crew and Kleindorfer 1976).

In the subsequent analysis, we use the terms “increasing,” “convex,” and “concave” in their respective weak senses. Also, for a function $h(\cdot)$, $h'(\cdot)$ refers to its derivative and $h^{-1}(\cdot)$ refers to its inverse function. A summary of notation and all proofs are given in Online Appendices A and B.

4. Utility Firm Model

In this section, we analyze a vertically integrated utility firm that maximizes its profit by investing in conventional and renewable energy sources and setting the electricity prices for its customers. To satisfy the electricity demand, the utility firm first uses the renewable source followed by the new conventional source. Any unmet demand is fulfilled by the existing

<table>
<thead>
<tr>
<th>Energy source</th>
<th>Nighttime intermittency factor q_n</th>
<th>Daytime intermittency factor q_d</th>
<th>Unit investment cost β $$/MW/day$$</th>
<th>Unit generation cost v $$/MW/period$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear energy</td>
<td>1.00</td>
<td>1.00</td>
<td>161.2</td>
<td>141.6</td>
</tr>
<tr>
<td>Natural gas</td>
<td>1.00</td>
<td>1.00</td>
<td>61.2</td>
<td>589.2</td>
</tr>
<tr>
<td>Coal</td>
<td>1.00</td>
<td>1.00</td>
<td>91.2</td>
<td>363.6</td>
</tr>
<tr>
<td>Wind energy</td>
<td>0.32</td>
<td>0.28</td>
<td>249.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.07</td>
<td>0.23</td>
<td>138.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: See Online Appendix D for the estimation procedure of β and v./
fleets. The profit maximization problem of the utility firm is given as follows:

$$\max_{k_r, k_c, p_n, p_d} \Pi(k_r, k_c, p_n, p_d)$$

$$= \sum_{i=[n,d]} E_i [p_r D(p_r, p_{i-}) - g((D(p_r, p_{i-}) - k_r) - k_c, q_i)] - \alpha(v, k_r) - \alpha(v, k_c). \tag{4}$$

The first term of the expectation above corresponds to the utility's revenue, the second term is the electricity generation cost from the existing conventional fleet, the third term is the generation cost from the new conventional source, and the last two terms are the investment costs for the renewable and conventional sources. We next present the following assumption, imposed throughout the paper.

Assumption 1. (i) $\beta_r \geq (q_n + q_d)\nu + \max(q_n, q_d) \cdot g'(a_n - a_d)$. (ii) $a_n - a_d \geq (\gamma + \delta)(2\nu + \beta_c)$.

Assumption 1, part (i) states that the investment cost of the renewable source is sufficiently high so that the total investment level of both renewable and new conventional energy sources is lower than the nighttime demand level under any pricing policy (see the proof of Lemma 1 in Online Appendix B). This implies that, in addition to the new sources, the existing conventional fleet is also used to fulfill the demand in both periods. This assumption is plausible based on the real electricity generation data given in Section 6. Specifically, the term on the right-hand side is 148.6 (88.2, respectively) for wind (solar, respectively) energy, whereas $a_n - a_d$ is 249.2/MW per day (138.9, respectively) as given in Table 1. This is also supported by the fact that the capacity of new investments in different energy sources is relatively small compared to that of the existing fleet. In particular, the former was approximately 1% of the latter in the United States in 2014 (FERC 2015).

Assumption 1, part (ii) implies that the difference between the market sizes of the daytime and nighttime periods is large enough that the daytime demand level always exceeds the nighttime demand under any pricing policy (see the proof of Lemma 1 in Online Appendix B). This part of the assumption is also consistent with practice, as the left-hand side is close to 9,000 MW/period per day, whereas the right-hand side is approximately 7,000. Moreover, this assumption reflects the fact that the daytime demand is higher than the nighttime demand in practice (EIA 2011). Furthermore, Assumption 1, part (ii) ensures that the optimal daytime price is higher than the optimal nighttime price under both pricing policies; i.e., $p_d^* \geq p_n^*$. This inequality is supported by the actual prices observed in practice (see Con Edison 2016, Shao et al. 2010). For instance, Pacific Gas and Electric utility firm charges its customers 15.5/kWh as the nighttime price and 17.5/kWh as the daytime price under peak pricing, whereas the price is 16.4/kWh under flat pricing (PG&E 2014).

We next present a lemma on the optimal prices. Let $p_{i_n}^*$ and $p_{i_d}^*$ denote the optimal nighttime and daytime prices, respectively, under the pricing policy $j \in \{\text{peak, flat}\}$.

Lemma 1. The maximization problem in (4) is jointly concave in k_r, k_c, p_n, and p_d. Furthermore, at optimality

$$p_{i_n}^* + p_{i_d}^* = \frac{a_n + a_d + (\gamma - \delta)(2\nu + \beta_c)}{2(\gamma - \delta)}, \quad j \in \{\text{peak, flat}\}. \tag{5}$$

Lemma 1 states that the sum of the optimal nighttime and daytime prices under peak pricing is equal to that under flat pricing. Intuitively, the sum of the prices represents the marginal revenue. To maximize the profit, the utility firm should keep its marginal revenue constant under both pricing policies because the marginal cost of investments is constant due to the linear investment costs. This result is consistent with practice, as the aforementioned Pacific Gas and Electric policy (PG&E 2014) also shows that the sum of nighttime and daytime prices are approximately equal under both flat and peak pricing policies. Moreover, Lemma 1 implies that the optimal demand is constant under both pricing policies. This result suggests that, in response to peak pricing, consumers only change the time they consume electricity but not the amount. Empirical studies also suggest a very low reduction in the total demand under peak pricing compared to flat pricing (e.g., King and Delurey 2005).

4.1. Energy Investment Levels

We next consider the impact of pricing policy on the renewable energy investment. Let $f(\cdot)$ denote the inverse of the derivative of the generation cost function; i.e., $f(\cdot) = (g')^{-1}(\cdot)$.

Proposition 1. (i) If

$$\frac{q_n}{q_d} \leq 1_r,$$ \hspace{1cm} \tag{6}

then $k_r^{\text{flat}} \geq k_r^{\text{peak}}$. (ii) On the other hand, if

$$\frac{q_n}{q_d} \geq R_1 = \frac{C_1(f(\beta_r/q_n) + (a_d - a_n)) + C_2}{C_1(f(\beta_r/q_n) - (a_d - a_n)) + C_2},$$ \hspace{1cm} \tag{7}

then $k_r^{\text{flat}} \leq k_r^{\text{peak}}$.

2 See the discussion following (3) for an explanation of the units for the argument of $g(\cdot)$.

Copyright © 2016 INFORMS. All rights reserved.
Proposition 1 compares the investment level of a renewable energy source between flat pricing and peak pricing. Proposition 1(i) states that, for a renewable source whose electricity output in the daytime is greater than that in the nighttime (i.e., \(q_{n} > q_{d} \)), flat pricing leads to a higher investment level than peak pricing. Clearly, solar energy satisfies this condition as the majority of the solar energy output occurs during the daytime. Proposition 1(ii), on the other hand, provides a condition that complements part (i). It is straightforward to show that \(R_{1} \geq 1 \). Thus, Proposition 1(ii) states that, for a renewable source whose electricity output in the nighttime is sufficiently greater than that in the daytime (i.e., \(q_{n}/q_{d} \geq R_{1} \)), peak pricing leads to a higher investment level than flat pricing. As we state in Section 1, the output of wind energy in a day depends on geographical regions. For the region where the output of wind energy is sufficiently high at night, peak pricing leads to a higher investment level. For the region where \(1 < q_{n}/q_{d} < R_{1} \), we have numerically observed that there exists a threshold value such that if \(q_{n}/q_{d} \) is less than this value, flat pricing leads to a higher investment. According to the case study of Texas data in Section 6, \(R_{1} = 1.17 \), and \(q_{n}/q_{d} = 1.14 \) for the wind energy source, which falls in the indeterminate region (i.e., \(1 < q_{n}/q_{d} < R_{1} \)) of Proposition 1. We shall see that flat pricing indeed increases wind energy investments in the Texas region.

Proposition 1 shows that flat pricing increases the investment level in a renewable source if this source generates most of its output during the peak demand period. This result can be explained by the relationship between the electricity demand pattern under a pricing policy and the electricity generation pattern of a renewable source. Consider the case of flat pricing and solar energy as an example. When flat pricing is used, the daytime demand increases and the nighttime demand decreases. This demand pattern better matches with the generation pattern of solar energy as more electricity from solar is generated during the daytime with zero costs. Thus, the utility firm invests more into solar energy under flat pricing. On the other hand, peak pricing, which increases the nighttime demand, motivates a higher investment in wind energy if it has sufficiently high output at night.

We next consider the investment level for the new conventional source. Note that the main role of this conventional source is to satisfy the electricity demand that cannot be satisfied by the renewable source due to intermittency. Thus, we shall construct conditions based on \((1 - q_{i})\), the probability that the renewable source is not available in period \(i, i \in [n, d]\).

Proposition 2. (i) If
\[
\frac{1 - q_{n}}{1 - q_{d}} \leq 1,
\]
then \(k_{c}^{\text{flat}} \geq k_{c}^{\text{peak}} \). (ii) On the other hand, if
\[
\frac{1 - q_{n}}{1 - q_{d}} \geq R_{2} = \frac{C_{1}(f(\beta_{i}/q_{d}) - (a_{d} - a_{n})) + C_{2}}{C_{1}(f(\beta_{i}/q_{d}) + (a_{d} - a_{n})) + C_{2}},
\]
then \(k_{c}^{\text{flat}} \leq k_{c}^{\text{peak}} \).

Proposition 2(i) suggests that flat pricing leads to a higher investment level for the new conventional source if the utility firm decides to invest in a renewable energy source whose output is mostly generated at night (i.e., \(q_{n} > q_{d} \)). This condition is satisfied by the wind energy if its output is sufficiently high at night (i.e., \(q_{n} > q_{d} \)). This is because, due to higher daytime demand under flat pricing, the utility firm needs to invest more into the new conventional source as the renewable source has low output during the daytime. Proposition 2(ii) presents a similar result if the utility firm decides to invest in solar energy with \(q_{n} > q_{d} \). In this case, peak pricing, which increases the nighttime demand, leads to a higher investment level for the conventional source in order to satisfy the increased demand at night.

4.2. Carbon Emissions

In this section, we consider the impact of pricing policy on carbon emissions. Under Assumption 1, the expected amount of carbon emission defined in (3) reduces to
\[
\text{ECE} = \sum_{i \in [n, d]} [D_{i}(p_{i}, p_{-i}) - q_{i}k_{i} - (1 - \epsilon)k_{i}],
\]
where we normalize the emission intensity of the existing fleet to 1, and \(\epsilon \leq 1 \) denotes the emission intensity of the new (less-polluting) conventional source.

Everything else being equal, (10) shows that increasing the capacity of the renewable source \(k \), by 1 unit results in \(q \) units of reduction in carbon emissions in period \(i \), whereas increasing the capacity of the new conventional source \(k_{i} \), by 1 unit results in \(1 - \epsilon \) units of reduction in emissions. Based on this observation, we define the threshold emission intensity level \(\tilde{\epsilon} \) as
\[
\tilde{\epsilon} = \frac{2 - q_{n} - q_{d}}{2}.
\]
This threshold value suggests that, for the new conventional source whose emission intensity is sufficiently high (i.e., \(\epsilon \geq \tilde{\epsilon} \)), the total emission reduction by increasing 1 unit of renewable energy capacity is higher than that by increasing 1 unit of the new conventional energy capacity.

While the emission threshold \(\tilde{\epsilon} \) is derived for any fixed prices, it can be used as a condition to compare the emission levels under the optimal flat and peak pricing policies. Proposition 3 shows this comparison.
Figure 2 (Color online) Investment Levels and Carbon Emissions

Notes. We set \(a_s = 30,000, \ a_d = 40,000 \) MW per period, \(q_d = 0.28 \), \(C_1 = 10^{-4} \), and \(C_2 = 10^{-2} \). These are in line with the real data used in the case study of Section 6. Furthermore, we set \(y = 13 \) and \(\delta = 3 \) because the optimal prices under these parameters are close to the observed prices in practice. We consider nuclear energy as the new conventional source so that \(e = 0, \ \beta_c = $161.1/\text{MW per day}, \) and \(\nu = $141.6/\text{MW per period} \). Finally, we consider wind energy as the renewable source, and to ensure that the investment level is positive even under low \(q_n \) values, we impose a 75% subsidy for wind energy by setting \(\beta_r = $62.3/\text{MW per day} \).

Proposition 3. Suppose \(e \geq \bar{e} \). (i) \(ECE_{\text{flat}} \leq ECE_{\text{peak}} \) if \(q_n/q_d \leq 1 \). (ii) On the other hand, \(ECE_{\text{flat}} \geq ECE_{\text{peak}} \) if \(q_n/q_d \geq R_1 \), where \(R_1 \) is defined in (7). (iii) If \(e < \bar{e} \), the statements in parts (i) and (ii) might not hold.

Proposition 3(i) states that if the emission intensity of the new conventional source is sufficiently high and the utility firm invests in solar energy, flat pricing leads to lower emissions. This is a joint result of two contradicting effects. On one hand, flat pricing leads to a higher investment in solar energy, resulting in lower carbon emissions. On the other hand, a higher solar energy investment leads to a lower investment in the new conventional source. As a result, the electricity demand not satisfied by the solar energy has to be satisfied by the existing fleet. If the emission intensity of the new conventional source is relatively high and close to that of the existing fleet, the increased emission amount will be relatively small. Together, flat pricing still leads to a lower emission level. Proposition 3(ii) shows a similar result for the wind energy source that generates considerably more electricity at night: peak pricing leads to a higher wind energy investment level and lower emissions if the emission intensity of the new conventional source is high.

Proposition 3(iii) reveals an interesting insight: a pricing policy might lead to both higher renewable energy investment and higher emissions if \(e < \bar{e} \), i.e., if the emission intensity of the new conventional source is low. This is because a pricing policy that leads to a higher renewable energy investment may reduce the investment level of the new conventional energy source. This results in a higher fraction of demand to be satisfied by the existing fleet that has a higher emission intensity. We provide an illustrative example of this case in Figure 2 based on the parameters estimated from the Texas data in the case study of Section 6. Figure 2 plots the optimal investment levels and the resulting carbon emissions for the peak and flat pricing policies with \(q_d = 0.28 \), which is the daytime intermittency parameter of wind energy given in Table 1. Here, a lower value of \(q_d \) corresponds to a power generation pattern similar to solar energy, whereas a higher value of \(q_d \) represents wind energy. As \(q_n \) increases, the renewable energy source becomes more reliable. This increases the optimal investment...
level in renewable energy and decreases the conventional energy investment under both pricing policies, which, in turn, leads to a decrease in the emission level. As long as \(q_n \) is smaller than 0.35, flat pricing leads to a higher renewable energy investment and lower carbon emissions. When \(q_n \) is greater than 0.35, peak pricing leads to a higher renewable energy investment and higher carbon emissions due to a lower investment in the new conventional source.

4.3. Consumer Surplus

In this section, we study the impact of pricing policy on consumer surplus. We first define the consumer surplus in a single product setting before extending this definition to our setting of two products (peak and off-peak electricity) with interdependent demand. The consumer surplus for a single product is given as \(\int_{p^*}^{p_{\text{max}}} D(p) \, dp \), where \(p^* \) is the optimal market price and \(p_{\text{max}} \) is the maximum price. An equivalent and more convenient definition for our purposes is \(\int_0^{z^*} D^{-1}(p) \, dz - p^* z^* \), where \(z^* \) is the optimal quantity demanded at \(p^* \), and \(D^{-1}(p) \) is the inverse of the demand function. Intuitively, the inverse demand function corresponds to the price that consumers are willing to pay. Thus, the consumer surplus is the difference between what the consumers are willing to pay (\(\int_0^{z^*} D^{-1}(p) \, dz \)) and what they actually pay (\(p^* z^* \)).

We illustrate this definition in Figure 3(a). It is more complicated to define the consumer surplus for two products with interdependent demand. We refer the reader to Pressman (1970) for a detailed discussion. Here, we adopt the definition suggested by Pressman (1970) and Takayama (1993, p. 625), who employs the concept of the line integral. First, let \(\xi_i(z, \cdot) = D_i^{-1}(z, \cdot) \), and define this inverse demand function in period \(i \) as

\[
\xi_i(z_i, z_{-i}) = \frac{\gamma(a_i - z_i) + \delta(a_{-i} - z_{-i})}{\gamma^2 - \delta^2}, \quad i \in \{n, d\},
\]

where \(z_i \) is the demand level in period \(i \in \{n, d\} \). Then, for the pricing policy \(j \in \{\text{flat, peak}\} \), the consumer surplus \(CS_j^i \) is given as

\[
CS_j^i = \int_{C=(0,0)}^{(z_n^*, z_d^*)} \xi_n(z_n, z_d) \, dz_n + \xi_d(z_d, z_n) \, dz_d - p_j^{i*} z_n^* - p_j^{i*} z_d^*,
\]

where \(p_j^{i*} \) is the optimal price, \(z_j^* \) is the corresponding demand level in period \(j \in \{n, d\} \), and \(C \) represents some path on \((z_n, z_d) \) plane that starts at \((0,0)\) and ends at \((z_n^*, z_d^*)\).

We illustrate this definition in Figure 3(b). The line integral on the right-hand side of (13) represents the area under the sum of the inverse nighttime and daytime demand curves (i.e., willingness to pay) along the path in which the nighttime and daytime demand levels change from zero to their respective optimal levels. The comparison of the consumer surplus between flat and peak pricing is shown in the following proposition.

Proposition 4. \(CS_{\text{flat}} \geq CS_{\text{peak}} \).

According to Proposition 4, the consumer surplus under flat pricing is higher than that under peak pricing. Intuitively, there are two contradicting effects of flat pricing on the consumer surplus. First, the electricity price is lower in the daytime under flat pricing,
leading to an increase in the consumer surplus. Second, the electricity price is higher in the nighttime under flat pricing, leading to a decrease in the consumer surplus. The former effect outweighs the latter because the market size is greater in the daytime period, i.e., $a_d > a_n$. Consequently, flat pricing leads to a higher consumer surplus than peak pricing.

We finally note that consumer surplus is an approximate measure of consumer welfare and the accuracy of this approximation is widely discussed in the literature (Takayama 1993, p. 625). This is because the consumer surplus is calculated based on the demand function, whereas the consumer welfare is calculated directly from the utility of the consumers. To address this issue, we present the underlying utility formulation behind our demand model in Online Appendix E. We prove that the utility of consumers under flat pricing is higher than that under peak pricing. This result is consistent with our conclusion that the consumer surplus is higher under flat pricing.

5. Impact of Subsidies on Investment and Emissions

5.1. Direct Subsidies

Policy instruments such as investment tax credits and cash grants are commonly used in shaping energy markets across the world. For example, the U.S. government provides tax credits for nuclear power plants and solar farms (EIA 2014b). These are effectively a form of direct subsidies as they reduce the cost of investment for conventional and renewable sources, which is equivalent to reducing β_r and β_r, respectively. Below we show the impact of direct subsidies on the investment levels as well as the corresponding carbon emission levels.

PROPOSITION 5. (i) A direct subsidy for the renewable energy source results in higher renewable and lower conventional energy investments. Furthermore, carbon emissions decrease in response to the renewable energy subsidy if $e \geq \bar{e} = (2 - q_n - q_d)/2$; otherwise, carbon emissions might increase.

(ii) A direct subsidy for the conventional energy source results in lower renewable and higher conventional energy investments. Furthermore, carbon emissions increase in response to the conventional energy subsidy if $e \geq \max\{\bar{e}, (\gamma + \delta)/(2\gamma)\}$, where γ and δ are the price-sensitivity parameters; otherwise, carbon emissions might decrease.

Proposition 5(i) indicates that a cash grant for the renewable source can be used to increase the renewable energy investment and reduce the corresponding carbon emissions as long as the emission intensity of the new conventional source is high. This is because the cash grant reduces the investment cost of the renewable source. Thus, the utility firm increases the investment of renewable energy, which, in turn, decreases the investment level of the conventional energy source. Consequently, a bigger fraction of the electricity demand has to be satisfied by the existing fleet. In this case, increasing the renewable investment due to direct subsidies might lead to a higher emission level if e is relatively small (i.e., $e < \bar{e}$). This effect is similar to that discussed at the end of Section 4.2.

We present an illustrative example of this case in Figure 4 by plotting the expected carbon emissions as a function of a cash grant for the renewable energy

![Figure 4](image-url)

Notes. We use the same values for a_n, a_d, C_r, C_t, γ, δ, β_r, ν, and e as in Figure 2. We consider solar energy as the renewable source and use its intermittency and cost parameters as reported in Table 1.
source. As seen in Figure 4, the amount of expected carbon emission increases in the cash grant as long as the unit investment cost \((\beta_x)\) is less than $68/MW per day. Furthermore, flat pricing leads to lower emissions. This is because the renewable energy investment level is higher under flat pricing.

Proposition 5(ii) shows that providing a cash grant for the new conventional source leads to a higher conventional energy investment, which, in turn, leads to a lower renewable energy investment. If the new conventional source is carbon intensive, because of the reduction of the renewable energy investment, the amount of carbon emission will increase.

5.2. Indirect Subsidies

To reduce the amount of carbon emission or increase the adoption of renewable energy, carbon taxes have been implemented in almost 40 countries. Whether a carbon tax should be charged remains a topic of debate in the United States (World Bank 2014). A carbon tax is a form of an indirect subsidy for carbon-free energy sources as it increases the cost of generating electricity from conventional energy sources with high emission intensities. We denote the carbon tax level with \(t\) and modify the utility firm’s objective function as

\[
\max_{k_r, k_c, p_n, p_d} \Pi(k_r, k_c, p_n, p_d)
= \sum_{i \in \{n, d\}} E_q[p_iD_i(p_i, p_n) - g((D_i(p_i, p_n) - k_c - k_d) + t)
- t(D_i(p_i, p_n) - k_c - k_d) + (v + t_e)
- \min(k_r, (D_i(p_i, p_n) - k_d))] - \alpha_c(k_r) - \alpha_c(k_c).
\]

Intuitively, the carbon tax should lead to a higher renewable energy investment as the generation cost of the conventional source increases. However, the proposition below shows that it is not always the case.

Proposition 6. (i) An indirect subsidy results in higher renewable and lower conventional energy investments if \(e \geq \max(\bar{e}, (\gamma + \delta)/(2\gamma))\); otherwise, the indirect subsidy might lead to lower renewable energy investment. (ii) Furthermore, the indirect subsidy results in a lower amount of carbon emissions.

Proposition 6(i) suggests that the renewable energy investment might decrease in response to a carbon tax if the emission intensity of the new conventional source is sufficiently low, i.e., \(e < \max(\bar{e}, (\gamma + \delta)/(2\gamma))\). To see this, note that the carbon tax increases the generation cost of the existing conventional source. To avoid the increased generation cost, the utility firm will invest more into the energy source with low emissions.\(^4\) If the emission intensity of the new conventional source is low (e.g., nuclear), the utility firm will increase the investment level in the new conventional source rather than the renewable source. This is because the renewable source provides electricity intermittently, whereas the low-emission conventional source can provide a steady electricity supply. For this case, we provide an illustrative numerical study in Figure 5. As seen in this figure, the renewable energy investment decreases with carbon tax when the new conventional source is carbon-free nuclear energy.

\(^4\) Also, due to the increased cost, the utility firm charges a higher price, which in turn decreases the demand. Thus, the need for the renewable source decreases if the tax level is sufficiently high. Similar observations are made in the literature for spending in pollution abatement technologies by Farzin and Kort (2000) and Baker and Shittu (2006).
Proposition 6(ii) implies that the carbon tax always reduces carbon emissions. This is because the carbon tax increases the generation cost of the existing fleet. Thus, the utility firm will increase its investment in less-polluting sources (either new conventional or renewable), leading to a decrease in emissions.

6. Case Study: Texas Data

We use real electricity generation and demand data from the state of Texas in 2010 to validate Propositions 1 and 2.

Recall that our result is obtained by solving the problem in (4). In this optimization model, we assume a convex and increasing function $g(\cdot)$ to represent the electricity generation cost. However, in practice, the electricity generation cost is obtained from an optimization model called the "unit commitment and dispatch model" (UCDM) solved by an independent system operator (ISO). A UCDM minimizes the electricity generation cost by choosing the set of generators (e.g., coal, natural gas power plants) as well as their output levels to satisfy the electricity demand in a time period. The UCDM considers a few electricity generation characteristics, such as capacity limitations and fixed generation costs, that we do not incorporate in the utility firm model described in Section 4. Using the detailed and realistic UCDM, this case study allows us to test the robustness of our insights obtained from the assumed $g(\cdot)$ function.

We use the UCDM of Cohen (2012), which is a mixed integer program that mimics the dispatch procedure of the Electric Reliability Council of Texas (ERCOT, the ISO serving the state of Texas), to replace the $g(\cdot)$ function. With the real electricity demand and supply data as inputs, we run the UCDM for different levels of renewable and conventional energy investments. From the resulting generation costs, we aim to validate Propositions 1 and 2.

The most important components to validate this result are the inputs for the UCDM. These inputs are the electricity demand data under each pricing policy and the supply data of electricity generation of Texas in 2010. Below we provide a detailed explanation for each of these inputs.

Demand Data. We use the observed 15-minute demand data of Texas as a proxy for the electricity demand under flat pricing as the majority of the customers were charged according to flat pricing in 2010. To obtain the electricity demand under peak pricing, we use the observed demand data as a basis and allow a certain (parametric) percentage of the demand in the peak period to shift to the off-peak period. To determine the peak and the off-peak periods, we use the original demand data and label a 12-hour peak demand period for each day such that the midpoint of the peak demand period temporally coincides with the occurrence of the maximum demand in that day. In other words, in each day, the peak demand period starts 6 hours before the occurrence of the highest demand level and lasts for 12 hours. The remaining 12 hours of the day is considered as the off-peak demand period. Note that, in each day, the peak demand period changes slightly and might include early evening hours depending on the season of the year. However, to ensure consistency with the rest of the paper, we still refer to the peak demand period as the daytime and to the off-peak demand period as the nighttime.

To determine the daytime and nighttime demand under the peak pricing policy, we use the result given in Lemma 1. That is, the sum of the optimal nighttime and daytime prices under peak pricing is equal to that under flat pricing. This result indicates that, when peak pricing is used, the decrease in the daytime demand is equal to the increase in the nighttime demand. To determine the exact amount of the reduction in the daytime demand, we develop an approach based on the empirical studies on customer demand responses to peak pricing (see Faruqui and Sergici 2010 for a summary). These studies suggest a broad range of estimates (2%–32%) for the percentage reduction in the demand of the peak period with an average value of 13%. Based on these estimates, we consider three scenarios as low response (5%), medium response (10%), and high response (15%). That is, under the high-response scenario, for example, we assume that 15% of the daytime demand is shifted to the nighttime. With this treatment, we generate the demand data under peak pricing.

Supply Data. We use two data sources for the electricity generation of Texas in 2010. The first is the electricity generation data set used by Cohen (2012). This rich data set provides variable generation costs and the other operational characteristics (e.g., capacity limitations, fixed generation costs, etc.) for all of the 144 conventional power plants in Texas. In addition to the conventional power plants, the data set (Cohen 2012) includes the wind energy output in Texas for 15-minute intervals. Unfortunately, the data set has no information on the solar energy output as the solar energy capacity in Texas was negligible in 2010.

To generate the solar energy supply data, we conduct a simulation study. One of the authors worked for the National Renewable Energy Laboratory (NREL) in Colorado and used an NREL simulation package called System Advisory Modeling to predict the solar energy generation based on the observed solar radiation data for 79 weather stations in Texas. We use the output of this simulation study as the solar energy generation data in Texas.
Optimal Investment Levels. We turn to our analysis and determine the optimal investment levels for both renewable and conventional energy sources under flat and peak pricing. With the $g(\cdot)$ function replaced by the UCDM, the utility firm optimizes its profit under each pricing policy $j \in \{\text{flat}, \text{peak}\}$ by choosing the renewable and conventional energy investment levels:

$$\max_{k_r, k_c} \Pi^j(k_r, k_c) = \text{Revenue}^j - G^j(k_r, k_c) - \alpha_r(k_r) - \alpha_c(k_c),$$

(15)

where $G^j(k_r, k_c)$ is the generation cost obtained from the UCDM for a renewable investment level k_r and a conventional investment level k_c under the pricing policy j. Here, as introduced in Section 3, $\alpha_r(k_r) = \beta_r k_r$ and $\alpha_c(k_c) = \beta_c k_c$ are the investment costs for the renewable and conventional sources, respectively, which are the same between the two pricing policies. Also, the revenue under each pricing policy (Revenue^j) is not affected by the energy investments as the prices are fixed under each scenario described above. Define the net benefit of investing k_r units of renewable energy and k_c units of conventional energy compared to zero investments under the pricing policy j as follows:

$$\pi^j(k_r, k_c) = \Pi^j(k_r, k_c) - \Pi^j(0, 0) = [G^j(0, 0) - G^j(k_r, k_c)] + [\alpha_r(0) - \alpha_r(k_r)] + [\alpha_c(0) - \alpha_c(k_c)].$$

(16)

Note that the first bracket $[G^j(0, 0) - G^j(k_r, k_c)]$ is the cost reduction by installing k_r units of renewable energy and k_c units of conventional energy, which is positive. Intuitively, using the renewable source and the new conventional source to satisfy demand results in lower variable generation costs, so the generation cost obtained from the UCDM becomes smaller after the investments. On the other hand, the second and the third brackets, $[\alpha_r(0) - \alpha_r(k_r)]$ and $[\alpha_c(0) - \alpha_c(k_c)]$, are the investment costs, which are negative.

To find the optimal investment levels by maximizing $\pi^j(k_r, k_c)$, we estimate the cost reduction function, i.e., $[G^j(0, 0) - G^j(k_r, k_c)]$, under each pricing policy j for both solar and wind energy. First, we evaluate the cost reduction function at k_r levels, where $k_r \in [0, 5,000, \ldots, 20,000]$ MW, and k_c levels, where $k_c \in [0, 1,000, 3,000, 5,000]$ MW, through the UCDM. Then, we fit a surface to these investment level pairs and the corresponding cost-reduction values. In particular, we consider the following function:

$$[G^j(0, 0) - G^j(k_r, k_c)] = l_r^i \times k_r + m_r^i \times \sqrt{k_r} + l_c^i \times k_c + m_c^i \times \sqrt{k_c},$$

(17)

where we estimate the parameters l_r^i, m_r^i, l_c^i, and m_c^i from the fitted surface.\(^6\) With this estimated cost-reduction function, we can obtain the best investment levels k_r and k_c that maximize the net benefit, $\pi^j(k_r, k_c)$. These levels are presented in Tables 2 and 3 when solar and wind energy, respectively, is considered as the renewable source. Additional details of this procedure as well as the estimated parameters are given in Online Appendix C.

According to Table 2, flat pricing leads to a higher solar energy investment than peak pricing if the utility firm considers solar energy as its renewable source. In this case, the new conventional energy investment is lower under flat pricing. Table 3 shows that, if the utility firm considers wind energy as the renewable source, flat pricing leads to a higher wind energy investment. In this case, the new conventional energy investment is also higher under flat pricing. In summary, this analysis, based on the real data sets and a practical dispatch process used in the Texas electricity market, shows two results. First, for the renewable source (either solar or wind), flat pricing leads to a higher investment. Second, for the conventional source, flat pricing leads to a higher (lower, respectively) investment if wind (solar, respectively) energy is considered as the renewable source. We shall verify that these results are consistent with what Propositions 1 and 2 predict.

Validation of Propositions 1 and 2. Proposition 1 suggests that flat pricing leads to a higher renewable energy investment for an energy source whose q_r/q_d

\[^6\] This functional form provides a very good fit for our data points as indicated by the high adjusted R^2 values given in Tables 2 and 3.
is less than 1; peak pricing leads to a higher investment if \(q_n/q_d \) is greater than \(R_1 \).

We estimate problem parameters as follows. To estimate the coefficients \(C_1, C_2, C_3, \) and \(C_4 \), we fit a cubic function to the generation cost curve, which can be obtained from the marginal generation cost curve given in Figure 1. We find that \(C_1 = 8 \times 10^{-8} \), \(C_2 = 4 \times 10^{-3} \), \(C_3 = 158 \), and \(C_4 = 160 \). We use the average demand in the daytime (and nighttime, respectively) period as a proxy for the market size \(a_d (a_n, \) respectively) and find that \(a_d = 40,834 \) MWperiod per day \((a_n = 32,003, \) respectively). Finally, we determine the intermittency parameters of the wind energy for each of the 15-minute intervals by dividing the wind output in that interval with the wind energy capacity. Then, we take an average of the intermittency parameters in the daytime and the nighttime. We find that \(q_n = 0.32 \) and \(q_d = 0.28 \) for the wind energy. Using the same method, we determine the intermittency parameters for the solar energy as \(q_n = 0.07 \) and \(q_d = 0.23 \). Based on these estimates, we find that \(R_1 \) is 1.17.

For the solar energy, \(q_n/q_d \) is 0.3, which is smaller than 1. Thus, Proposition 1(i) predicts that the investment in solar energy is higher under flat pricing. This is consistent with our numerical finding in Table 2. For the wind energy, \(q_n/q_d \) is 1.14, which falls in the indeterminate region \((1, R_1)\). Nevertheless, our stylized model (with the \(g(\cdot) \) function) still predicts that the investment in wind energy is higher under flat pricing as shown in Figure 2. This numerical observation is consistent with the finding in Table 3 which also suggests that the investment in wind energy is higher under the flat pricing policy. This completes the validation of Proposition 1.

For the new conventional source, Proposition 2 states that if the renewable source satisfies \((1 - q_n)/(1 - q_d) \leq 1\), flat pricing leads to a higher investment in the new conventional source compared to peak pricing. If this ratio is greater than or equal to \(R_2 \), flat pricing leads to a lower new conventional energy investment. With the estimated problem parameters above, we find that \(R_2 = 1.19 \). For the wind energy, \((1 - q_n)/(1 - q_d) = 0.94 \) and for the solar energy, \((1 - q_n)/(1 - q_d) = 1.21 \). Thus, the wind energy satisfies the first condition, whereas the solar energy satisfies the second. Our numerical findings in Tables 2 and 3 are consistent with what Proposition 2 predicts. This completes the validation of Proposition 2.

7. Extensions

7.1. Distributed Generator Model

In this section, we consider the same investment issue for DGs, (e.g., households). These investments include, for example, residential rooftop solar panels or small-scale wind turbines used on remote farms. Although the current share of DGs in the U.S. electricity generation capacity is very small, DGs are expected to play a vital role in the “smart grid” market in the near future (Zpryme 2012). According to Sherwood (2013), more than 90% of the distributed solar installations are connected to the electricity grid under a net metering agreement: the electricity customer who owns the generator has a bidirectional electricity meter that spins backward when the generator produces more electricity than the customer’s usage. This excess generation is credited at the full retail electricity price (Sherwood 2013).

As reported in recent articles in the Wall Street Journal (Sweet 2013) and the New York Times (Cardwell 2013), net metering has fueled a heated debate between the utility firms and the DGs. According to the utility firms, under net metering, DGs are overcompensated for their excess generation. The utility firms claim that DGs only cancel out generation costs while they receive much higher retail prices as compensation. On the contrary, the DGs counterclaim that their actual value for the utilities is much higher than the avoided generation costs. They assert that, by generating electricity at the consumption sites, they also avoid transmission losses and congestions in the transmission lines. So far, regulators have favored the claims of the DGs. For instance, California Public Utilities Commission (PUC) expanded its net metering program in 2012 (Sweet 2012) and Arizona PUC decided to maintain its net metering policy in 2013 (Wall Street Journal 2013).

In line with the recent decisions of the regulators, we investigate the impact of electricity pricing policies on distributed renewable energy investments under net metering. Specifically, we consider a Stackelberg game where the utility firm acts as the leader who maximizes its profit by setting the energy investment level and the electricity prices. Each DG acts as the follower and decides whether or not to invest in a distributed energy source by comparing its investment cost to the benefit of investments due to net metering (which is affected by the electricity price set by the utility firm).

We assume that each DG can invest in 1 unit of the renewable energy capacity by incurring a cost of \(\theta \times \beta_{DG} \) where \(\beta_{DG} \) is the average unit investment cost for DGs, and \(0 < \theta < 1 \) represents the heterogeneity in the investment cost. This heterogeneity is mainly due to the differences in the state-level subsidies and the roof work required for installing solar panels (Gillingham et al. 2014). The customers compare their investment costs to the expected benefits of investment under net metering. The expected benefit is \(q_n p_n + q_d p_d \) as 1 unit of investment yields \(q_i \) amount of electricity in period \(i \in \{n, d\} \), which is compensated at the electricity price
of \(p_i \) due to net metering. Thus, a type \(\theta \) customer invests if and only if
\[
\theta \leq \hat{\theta} = \frac{q_a p_n + q_d p_d}{\beta_{DG}}. \tag{18}
\]

That is, the customers whose type is less than the indifferent type \(\hat{\theta} \) invest in renewable energy. Without loss of generality, we assume that the potential market size is 1 unit, so the total investment level is given as \(F(\theta) \), where \(F(\cdot) \) is the cumulative distribution of type parameter \(\theta \). For tractability, we assume that \(\theta \) is distributed uniformly between 0 and 1 and we define the total investment of DGs as \(k_{DG} = F(\theta) \). Given the investment of \(k_{DG} \), the utility firm determines its own renewable and conventional energy investment level as well as the electricity prices so as to maximize its profit, given as follows:
\[
\max_{k_r, k_f, p_n, p_d} \Pi(k_{DG}, k_r, k_c, p_n, p_d)
\]
\[
= \sum_{i\in[n,d]} E_i \left[p_i (D_i(p_i, p_-) - k_{DG} \tilde{q}) \right.
\)
\[
- g((D_i(p_i, p_-) - k_r - (k_{DG} + k_c) \tilde{q}))
\]
\[
- \alpha(k_r) - \alpha(k_c). \tag{19}
\]

Proposition 7. (i) The maximization problem in (19) is jointly concave in \(k_r, k_c, p_n \), and \(p_d \).

(ii) If \(q_n \geq q_d \), then \(k_{DG}^{\text{flat}} \geq k_{DG}^{\text{peak}} \); otherwise, \(k_{DG}^{\text{flat}} \leq k_{DG}^{\text{peak}} \).

Proposition 7 states that flat pricing leads to a higher renewable energy investment for DGs if \(q_n \geq q_d \), as in the case of wind energy. On the other hand, if \(q_n < q_d \), as in the case of solar energy, peak pricing leads to a higher investment. These observations are in contrast with the conclusions derived from the utility firm model. This contrast is due to the net metering policy. Under peak pricing, the electricity price is higher during the daytime when the majority of the solar energy output is generated. Thus, due to net metering, DGs enjoy a higher return for their solar energy investments under peak pricing. Hence, peak pricing leads to a higher solar investment. On the other hand, under flat pricing, the electricity price is higher during the nighttime when the majority of the wind energy output is generated. Thus, DGs receive a higher reimbursement for their wind investments and increase their investments under flat pricing.

7.2. General Intermittency Distribution

In the original model, we assume that the intermittency factor \(\tilde{q} \) is distributed according to a two-point distribution. We can relax this assumption by considering \(\tilde{q} \) as a random variable with a support of [0,1] in period \(i \in \{n,d\} \). The generation pattern for a renewable source can be represented by these two random variables. For example, solar energy can be represented with \(\tilde{q} \), being stochastically larger than \(\tilde{q}_n \). For this generalization, the following assumption is needed.

Assumption 2. Suppose \(g(\cdot) \) is quadratic; i.e., \(C_1 = C_3 = C_4 = 0 \) in (2), and \(\beta_i \geq (E[\tilde{q}_n] + E[\tilde{q}_d]) + (E[\tilde{q}_n] - E[\tilde{q}_d] - E[\tilde{q}_n]) g((3a_n - a_d)/4) + E[\tilde{q}_d] g'((a_n - 3a_d)/4) \).

Note that Assumption 2 implies Assumption 1 if \(\tilde{q} \) is distributed with a two-point distribution and \(g(\cdot) \) is assumed to be quadratic. Under this assumption, the investment cost of the renewable source is sufficiently high so that the total investments in the renewable and new conventional sources do not exceed the nighttime demand level. We next extend Propositions 1–3 in the following proposition.

Proposition 8. Suppose that Assumption 2 holds.

Consider the utility firm model in (4):

(i) (solar) if \(E[\tilde{q}_d] \geq E[\tilde{q}_n] \), then \(k_{DG}^{\text{flat}} \geq k_{DG}^{\text{peak}} \), and \(ECE_{DG}^{\text{flat}} \leq ECE_{DG}^{\text{peak}} \).

(ii) (wind) if \(E[\tilde{q}_d] \leq E[\tilde{q}_n] \), then \(k_{DG}^{\text{flat}} \leq k_{DG}^{\text{peak}} \), and \(ECE_{DG}^{\text{flat}} \geq ECE_{DG}^{\text{peak}} \).

Proposition 8 shows that flat pricing leads to a higher renewable energy investment, a lower conventional energy investment, and lower carbon emissions if \(E[\tilde{q}_d] \geq E[\tilde{q}_n] \), i.e., when solar energy investments are considered. On the other hand, if wind energy investments (i.e., \(E[\tilde{q}_d] \leq E[\tilde{q}_n] \)) are considered, peak pricing leads to higher renewable and lower conventional energy investments, and lower carbon emissions. These insights are consistent with those derived from the original model with the two-point intermittency distribution when \(g(\cdot) \) is assumed to be quadratic.

7.3. Demand Uncertainty

We can incorporate demand uncertainty into the utility firm model if the intermittency parameter follows a two-point distribution as in (1). Specifically, consider that the demand in period \(i \) is \(D_i(p_i, p_-) = a_i - \gamma p_i + \delta p_- + \epsilon \), where \(\epsilon \) is a random variable with zero mean and a support of \([-L, U]\). In this case, as long as \(\beta_i \geq q_n (v + g'(L)) + q_d v + max(q_n, q_d) g'(a_d - a_n + L) \) and the \(g(\cdot) \) function is quadratic, the results in Proposition 8 can be established. The proof is available from the authors.

8. Concluding Remarks

This paper studies the impact of the flat and peak pricing policies on renewable energy investments and carbon emissions. We investigate this question from the perspective of utility firms and incorporate several unique features of the energy sources, such as generation patterns and intermittencies, into our model. We find that flat pricing motivates the utility
firm to invest more in the solar energy source and leads to lower carbon emissions. The same is true for wind energy if a reasonable fraction of wind energy is generated during the day. These findings and the relevant parameter ranges are verified through a case study based on the electricity data of Texas. We also investigate the effect of pricing policies on DGs and find an opposite result: peak pricing leads to a higher solar energy investment. This result is due to the net metering policy. We also use our model to study the effects of direct and indirect subsidies.

This paper has significant policy implications. Policy makers and academics have been arguing in favor of the peak pricing policy (or more granular policies such as real-time pricing) as a means to smooth out electricity demand throughout the day. Some experts have further argued that peak pricing may also lead to an increase in renewable energy investments under certain cases. This paper shows that the peak pricing policy may not produce the desired increase in renewable energy investments. In particular, we show that flat pricing leads to a higher renewable energy investment, lower emissions, and a higher consumer surplus\(^7\) if the investors are traditional utility firms. This is particularly relevant in the United States, where the energy investments are mainly undertaken by utility firms. The impact of pricing policies on renewable energy investments requires a careful consideration of three factors together: (i) the electricity generation pattern of the renewable sources, (ii) the demand pattern throughout the day, and (iii) the investor in energy sources (utility firms or DGs). In addition, policies such as carbon tax and cash grants for renewable investments may not produce the desired outcomes, either: our results suggest that a high level of carbon tax may reduce renewable energy investments, and cash grants to renewable sources may increase carbon emissions.

Our model has limitations that merit further research. For example, we do not consider the capacity investment problem dynamically in a horizon in which the demand evolves with a trend or seasonality. In addition, we do not model renewable portfolio standards (RPS) that specify a percentage target for the renewable energy capacity in the overall electricity mix. Although our results hold if the RPS target is low, the impact of high RPS targets on investment levels remains an open question. Another limitation of our model is that we assume that the utility firm invests only in a single renewable source instead of multiple renewables with different generation patterns. Finally, we do not consider the impact of pricing policies on the variance of demand uncertainty.

Supplemental Material

Supplemental material to this paper is available at https://doi.org/10.1287/mnsc.2016.2576.

Acknowledgments

The authors are grateful to Aaron Beach, Sean Ong, and Stuart Cohen of the National Renewable Energy Laboratory (NREL) for their invaluable contributions to the case study. They also thank Serguei Netessine and Anton Ovchinnikov for helpful comments.

References

