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ABSTRACT – The objective of this study is to develop a method that uses a combination of field data analysis, 

naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities 

of integrating passive and active safety systems in frontal impact conditions.  For the purposes of this study, the active 

safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal 

or other crash scenarios.  A field data analysis was first conducted to estimate the delta-V distribution change based 

on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature.  Analysis of changes in 

driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions 

were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or 

backward increased significantly after the braking onset.  Parametric studies with a total of 4800 MADYMO 

simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks 

and on the optimal restraint designs.  By combining the results for the delta-V and head position distribution changes, 

a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic 

Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can 

adapt to the specific delta-V and pre-crash posture.  This study demonstrated the potential for further reducing 

occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature.  Future analyses 

considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, 

gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA 

or active safety systems. 

KEYWORDS – Integrated active and passive safety, Field data, Naturalistic driving data, Computational modeling, Delta-V, 

Driving posture 

__________________________________ 

INTRODUCTION 

In general, there are two types of safety systems 

available in current vehicle designs: passive and 

active.  In addition to active safety systems, driver 

assist (DA) technologies are becoming more main-

stream in the modern vehicle fleet.  DA or active safety 

systems are designed to help drivers avoid or mitigate 

crashes, whereas, passive safety systems are designed 

to reduce occupant injury risks during crashes.  Until 

recently, little research regarding integration of these 

types of systems has been published.  Several 

researchers have estimated fatality and serious injury 

reduction potential of passive safety systems (e.g., 

safety belts and airbags) and DA or active safety 

systems, e.g., forward collision warning and 

autonomous pre-crash braking (Bean et al. 2009; 

Evans 1986, 1991; Kahane 1996, 2000; Kusano and 

Gabler 2010, 2012; NHTSA 1999, 2001).  However, 

such estimations only focused on one of the two 

systems, separately.  With the increasing pace of 

implementation of DA and active safety systems, 

features such as pre-crash brake assist or pre-crash 

autonomous braking provide the potential to affected 

pre-crash conditions, such as vehicle kinematics (e.g., 

delta-V) and occupant pre-crash position/posture, both 
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of which have pronounced effects on occupant injury 

risks during frontal crashes.  Therefore, the potential 

advantage of an integrated active and passive safety 

system is not likely to be the sum of these two single 

systems. 

Among the more recent studies, crash safety research 

has demonstrated that reducing the delta-V can reduce 

injury risks in frontal crashes.  Such strong 

dependence between crash severity and injury risk has 

been found through analyses of real-world crash data 

(Augenstein et al. 2003; Kononen et al. 2011) and data 

from event data recorders (Stigson et al. 2012).  

Current passive safety systems have to be designed 

with consideration of regulatory and/or third party 

crash testing conditions, in which the delta-Vs are 35 

mph or higher in frontal crashes.  While some studies 

have shown that achieving top ratings in these types of 

tests generally results in lower risks of death in real-

world crashes (Farmer 2005; Ryb et al. 2010), other 

studies have also reported that no statistically 

significant relationship between the Euro NCAP 

scores and real-world death or severe injury outcomes 

(Segui-Gomez et al. 2007, 2010).  Therefore, a passive 

safety system that can adapt to a lower delta-V 

resulting from the activation of a particular active 

safety device may further reduce occupant injury risks. 

The reduced delta-V resulting from a DA or active 

safety system is generally from a hard pre-crash 

braking event.  The braking events can potentially 

affect the occupant pre-crash postures, most 

importantly the head locations right before the crash.  

A previous modeling study by Bose et al. (2010) has 

demonstrated that occupant pre-crash posture has 

significant effects on occupant injury risks in frontal 

crashes, and more recent studies (Adam and Untaroiu 

2011; Untaroiu and Adam 2012) have also shown that 

passive safety systems that can adapt to occupant pre-

crash posture may further reduce occupant injury risk. 

Therefore, if the occupant pre-crash posture is 

changed significantly due to the DA or active safety 

system, then occupant injury risk may potentially be 

further reduced by an integrated active and passive 

safety system that is adaptable to such occupant 

posture changes. 

In order to adapt the passive safety system to the 

changed pre-crash conditions caused by the DA or 

active safety system, signals from active safety 

system, such as the delta-V and pre-crash posture 

information, should be integrated into the passive 

safety system, so that their performance can be tailored 

to the changed crash and occupant situations.  Majority 

of the recent studies on integration of active and 

passive safety technologies focused only on reversible 

seatbelt pretensioner (Ito et al. 2013; Komeno et al. 

2013; Mages et al. 2011; Merz et al. 2013), which can 

pull the seatbelt webbing into the retractor during a 

pre-crash braking.  Studies on quantifying the benefit 

of developing a restraint system truly adaptive to the 

delta-V and occupant posture resulted from activation 

of a pre-braking DA feature are lacking in the 

literature. 

Therefore, the objective of this study is to assess the 

potential occupant protection capabilities of integrated 

active and passive safety systems.  Specifically, in this 

study, a combination of field data analysis, naturalistic 

driving data analysis, and computational simulations 

were used to explore the potential occupant protection 

capabilities of a restraint system adaptive to the pre-

crash delta-V and occupant posture.  The following 

steps were required in this study:  

1) Identifying the patterns of pre-crash vehicle

kinematic changes (e.g. delta-V change) when a

DA or active safety system is presented through a

field data analysis.

2) Identifying the patterns of pre-crash occupant

postures when a DA or active safety system is

presented (e.g. pre-crash braking) through a

naturalistic driving data analysis.

3) Performing computational simulations to evaluate

injury risk reduction if the restraint system design

is optimized with a given delta-V and pre-crash

occupant posture.

4) Estimating the weighted average of injury risk

reductions of integrated safety systems

considering the delta-V change and pre-crash

posture change due to the presence of a DA or

active safety system.

FIELD DATA ANALYSIS 

In this study, national crash datasets were analyzed to 

better understand the scope of the passive safety issue 

addressed by a given active safety system.  Potential 

injury risk reduction for an active safety system comes 

in two types: crashes avoided and crashes mitigated. 

For crashes avoided, there is no further work for the 

passive safety system to do, but there are also fewer 

crashes to be addressed by the passive safety system. 

However, for crashes mitigated, the passive safety 

system may further reduce the occupant injury risks by 

preparing seat belts and/or airbags for a potential 

crash.  Injury risk reduction estimation must therefore 

focus on the potential enhancement of passive safety 

system in the context of the crash mitigation resulted 

by the active safety system. 
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In this study, the purposes of the field data analysis 

were 1) to estimate the delta-V distributions in frontal 

crashes with and without a DA or active safety system, 

and 2) to provide a weighting function for 

computational simulation results, so that the potential 

injury risk reduction of integrated active and passive 

safety systems can be estimated for the whole 

population. 

Methods 

Data from the National Automotive Sampling System 

(NASS) were used in the field data analysis.  NASS 

includes two datasets—the General Estimates System 

(GES) and the Crashworthiness Data System (CDS). 

The GES database is a complex stratified probability 

sample of police-reported crashes in the United States. 

It contains about 50,000 crashes per year, and each is 

coded in a standardized way.  Only information from 

police reports is included, but the sample allows 

general estimation of the scope of the crash problem 

across the country.  The CDS database is a complex 

stratified sample of tow-away crashes involving a light 

vehicle in the United States (National Highway Traffic 

Safety Administration, 2007).  CDS captures 3000-

4000 crashes per year and includes a full crash 

investigation, including estimation of delta-V, the 

change in speed experienced by a given vehicle 

involved in a crash.  Delta-V is critical to this effort 

because it is the single strongest predictor of injury 

outcome and because crash mitigation by a DA or 

active safety feature is assumed as a reduction in delta-

V. 

GES provides information about the overall scope of 

the rear-end crash scenario, which we found makes up 

about 34% of all police-reported crashes.  The rear-end 

crash defined here is a crash wherein a vehicle crashes 

into the vehicle in front of it.  To avoid confusion, we 

will use “frontal crash(s)” to represent this type of 

crashes throughout the paper.  One of the challenges 

in this work is that while the GES database is the key 

to understand the broad scope of the crash problem 

addressed by the active safety system, the detail in 

CDS is needed to estimate the delta-V distribution and 

injury outcome from these crashes.  To address this, a 

previously developed method of estimating the delta-

V distribution using injury outcome in GES and a 

known relationship between delta-V and injury based 

on the CDS data (Flannagan 2013) was used (see 

Appendix A).  This can be thought of as “reverse-

engineering” the delta-V distribution for a given crash 

direction based on the distribution of injuries seen in 

the GES crash data.  Note that this method does not 

reconstruct delta-V for a single crash, but instead 

generates a distribution of delta-V over a large number 

of crashes of a given type. 

Results 

Figure 1 shows the estimated delta-V distribution for 

the striking vehicle in a frontal crash.  The distribution 

is lognormal, which has been found to fit known delta-

V distributions reasonably well.  This distribution has 

a mean of 2.85 and a standard deviation of 0.50. 

Figure 1: Distribution of delta-V a frontal crash 

This distribution (and the overall 34% of all police-

reported crashes representing frontal crashes) makes 

up the base, or denominator, to which active and 

passive safety systems effectiveness estimates are 

compared.  Since the passive safety system, by 

definition, operates with the presence of a DA or active 

safety system, next it is needed to find the estimated 

effectiveness of an active safety system for crash 

avoidance.  Since it is a difficult and elusive problem 

to estimate the effectiveness of an active safety system 

in the scope of this project, several estimates in a 

sensitivity analysis were used.  In this study, a 20% 

effectiveness for crash avoidance for a DA or active 

safety system was assumed and used as an example. 

The overall percent reduction in crashes does not, in 

and of itself, determine how the delta-V distribution 

should change.  However, it is safe to assume that if 

some percentage of crashes is avoided, others are 

mitigated, or reduced in severity.  Thus, the delta-V 

distribution of frontal crashes for vehicles equipped 

with a DA or active safety system will not be the same, 

but with smaller area under the curve.  

To address this, two different models—a simple, 

straw-man model of the reduction process, and a more 

complex model were investigated.  The first model 

simply applies a fixed delta-V reduction to the entire 

delta-V distribution with the goal of eliminating 20% 

of the area under the curve.  This approach is 

illustrated in Figure 2.  
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Figure 2: Original distribution of delta-V for the 

striking vehicle in a frontal crash (solid curve) and 

hypothetical distribution of delta-V for DA active-

safety-equipped vehicles (dash curve), based on a 

fixed delta-V reduction for all crashes.  

The fixed curve shift shown in Figure 2 meets the goal 

of eliminating 20% of crashes, and it would serve as a 

good model for the effect of an automated braking 

system on the delta-V distribution. However, it does 

not represent a satisfying mechanistic model for the 

scenario in which the driver is responding to a warning 

or even for a brake-assist system that works only after 

the driver has initiated braking.  A more plausible 

model of the effect of a DA or forward collision 

warning system is that for each frontal crash situation, 

the driver response to the warning is itself a random 

variable with an exponential distribution.  The 

exponential distribution is a common distribution of 

wait times, so it makes sense in this context.  We call 

this the random-shift model.  Again, the parameter of 

the driver response distribution is selected so that 20% 

of the area under the curve is to the left of 0 delta-V 

(i.e., the crash is avoided).  The computation of the 

exponential parameter is explained in Appendix B.  

Figure 3 shows the random-shift delta-V distribution 

compared to the original distribution.  

Figure 3: Shifted distribution of delta-V for the 

striking vehicle in a frontal crash (solid curve) and 

hypothetical distribution of delta-V for DA active-

safety-equipped vehicles (dash curve), based on a 

random delta-V reduction for all crashes.  

A further refinement of the random-shift model is one 

that incorporates differences in response time as a 

function of age.  Age influences this problem in a 

variety of ways.  First, frontal crashes involve drivers 

of different age groups at different rates.  Second, 

drivers in different age groups may have different 

original delta-V distributions for frontal crashes. 

Finally, different-age drivers may have different 

response times to warnings.  These age-related 

differences are particularly important because age has 

a strong effect on injury risk, and passive safety 

systems might be tuned to the population of drivers 

and passengers who are likely to be encountered. 

Using GES, we estimated the percent of frontal 

crashes involving drivers in each of three age groups: 

young (16-30), middle-aged (31-59), and older (60+). 

Of drivers of the striking vehicle in a frontal crash, 

39% are young, 48% are middle-aged, and 13% are 

older.  This largely represents the total driving 

exposure for these groups, but for the young drivers in 

particular, there is an increased risk of being in a 

frontal crash.  

Next, using CDS data, we estimated the delta-V 

distribution differences for each of these age groups. 

In particular, young drivers tend to have a higher mean 

delta-V, followed by middle-aged drivers, and then 

older drivers.  The three resulting delta-V distributions 

are shown in Figure 4.  These curves represent the 

current population of frontal crashes, broken down by 

driver age group.  The area under each curve 

represents the contribution of those drivers to the total 

population.  Thus, the sum of the areas under all three 

curves is 1.0. 

Figure 4: Original distribution of delta-V for the 

striking vehicle in a frontal crash, broken down by 

driver age group. Area under each curve represents 

the percent of crashes involving each driver age 

group. The total area under all curves is 1.0. 

Figure 4 represents both the differential involvement 

in frontal crashes and different delta-V distributions. 

However, investigation of the literature on the third 

difference—warning response time—produced mixed 

results.  Studies by Kramer et al. (2007) and Lerner 

(1993) both showed no difference as a function of age 
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in response to warnings.  Our own data analysis of 

warning response also showed no difference in 

response time.  In this study, we recommend 

continuing the estimation without a reaction-time 

difference by group. 

Using a random shift with equal response distributions 

for all age groups, we estimated the distribution of 

delta-V for DA active-safety-mitigated frontal crashes 

by age group as shown in Figure 5.  Note that it is 

assumed a 20% crash avoidance by a DA or active 

safety systems. 

Figure 5: Shifted distribution of delta-V for the 

striking vehicle in a frontal crash for DA active-

safety-equipped vehicles, broken down by driver age 

group. Area under each curve represents the percent 

of crashes involving each driver age group. Total area 

under all curves is 0.8. 

NATURALISTIC DRIVING DATA ANALYSIS 

The purpose of the naturalistic driving data analysis in 

this study is to provide data and compare the drivers’ 

head positions before and after the onset of hard 

braking events using data from the Integrated Vehicle 

Based Safety System (IVBSS) program recently 

completed by UMTRI (Sayer et al. 2011).  Drivers’ 

head position was used as a reference to their body 

position during hard braking events (i.e., critical safety 

events).  It is expected that the observed head position 

change for different driver groups will have different 

trends. 

Dataset 

The IVBSS project was a five-year large-scale study 

that was conducted by UMTRI and funded by US 

DOT.  In that study, a total of 108 randomly sampled, 

passenger-car drivers participated, with the sample 

being stratified by age (younger from 20 - 30 years; 

middle-aged from 40 - 50 years; older from 60 - 70 

years) and gender (female and male).  Sixteen late-

model Honda Accords were used as research vehicles. 

Consenting drivers used the test vehicles in an 

unsupervised  manner, simply  pursuing  their  normal 

trip-taking behavior over a 40-day period, using the 

equipped vehicles as a substitute for their own 

personal vehicles.  The first 12 days of vehicle use 

served as the baseline period during which warning 

functions were not provided to drivers, but all sensors 

and equipment were still operating in the background 

and all data was recorded.  The following 28 days were 

the treatment period during which warning functions 

were enabled and provided to drivers when 

appropriate.  The integrated warning system includes 

forward-crash, lateral-drift, lane-change/merge crash, 

and curve-speed warnings.  The data set collected 

represents 213,309 miles, 22,657 trips, and 6,164 

hours of driving, with over 600 signals captured at 10 

Hz or faster (e.g., speed, range, throttle position, and 

radar data).  There are five camera views to capture 

drivers’ head, forward scene, hand position, left and 

right rear views (Figure 6).  

Figure 6: Five camera views from IVBSS study 

Methods 

The definition of hard braking events was determined 

based on both the G-force level that was commonly 

used in the literature, and the G-force distribution in 

our datasets, which was defined as a braking profile 

with a peak deceleration level of 0.45g or more.  The 

video data from these events were analyzed to quantify 

the patterns of pre-crash occupant postures, especially 

head locations.  Within the IVBSS datasets, a total of 

470 hard braking events were identified.   

Table  1 shows the distribution of the hard braking 

events across different age and gender groups.  The 

young male drivers had the highest proportion of hard 

braking events.  The density distribution of the 

deceleration G-levels of all the 470 hard braking 

events was shown in Figure 7.  In about 85% of the 

hard braking events, the maximum deceleration value 

was between 4.5 and 5.5 m/s2. 
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Table 1: Number of hard braking events by age and 

gender 

Younger 
Middle-

aged 
Older Total 

Female 61 53 63 177 

Male 158 73 62 293 

Total 219 126 125 470 

Figure 7: Distribution of peak deceleration (m/s2) 

Drivers’ head position (5s before and 5s after the brake 

onset) were video coded and classified into 10 

categories: left forward, left center, left rear, center 

forward, center center, center rear, right forward, right 

center, right rear, and others (Figure 6).  The coding 

software was designed and developed for the purpose 

of this study.  Two trained video coders were working 

in parallel on all the 470 hard braking events.  Their 

results were cross compared and both coders revisited 

all the events on which they had different opinions till 

they both agreed on the final results. 

Due to the small sample size, data on drivers’ head 

position was further aggregated into four levels 

including Forward (i.e., drivers’ body leaning 

forward), Centered (i.e., drivers’ body remaining 

straight), Rearward (i.e., drivers’ body leaning 

rearward), and others (e.g., looking down to cell 

phones) for the analysis.  Example of different head 

positions was shown in Figure 8.  

The dependent variable was the percentage of time 

that each driver spent in each position level during 

each braking event.  The analyses were performed 

with linear mixed models using the PROC MIXED 

procedure in the statistical software package SAS 9.2 

(Eq 2).  An unstructured covariance matrix was 

assumed to model variance heterogeneity and to 

account for within-subject variance from repeated 

observations from the same driver.  Fixed effects 

predictors included age, gender, head position level, 

and timing (before or after brake onset).  Driver and 

interactions between driver and any fixed effects were 

treated as random effects.  This accounts for within-

subject variance from repeated observations from the 

same driver and effectively compares a driver to 

him/herself.  

Y = α + βX + μZ + ε   (2) 

Where, 

 Y=Percentage of time that each driver spent

in each head position level,

 α=intercept,

 β=coefficient matrix for the fixed effects,

 X=fixed effects (e.g., age, gender),

 µ=coefficient matrix used for random effects

matrix,

 Z=random effects matrix (e.g., subject

effect), and

 ɛ=error term (normally and independently

distributed) associated with parameters not

included in the model.

(a) Head forward (b) Head centered 

(c) Head rearward (d) Others 

Figure 8: Examples of different driver head locations 

Results 

Results of the analysis showed a significant interaction 

term between position and timing (F(3,402)=11.7, 

p<0.05).  As shown in Figure 9, drivers’ head position 

were mostly in the center position before the braking 

onset, while the percentage of time drivers leaning 

forward or  backward were increased significantly 

after the braking onset.  Age effect was observed that 

the percentage of time spent in the other position of 

young drivers was significantly higher than the other 

two age groups, suggesting young drivers were more 

likely engaging in non-driving tasks.  The percentage 

of time that older drivers spent in centered position 

was significantly higher than the other two driver 

groups (Figure 10). 
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Figure 9: Timing effect on the percentage of time 

spent in each head position 

Figure 10: Age effect on the percentage of time spent 

in each head position 

Analysis on drivers’ head position changing patterns 

from before-braking-onset to during-braking was also 

conducted.  Data during the last second before the 

braking onset and the first second after the brake onset 

of the 470 hard braking events were extracted and used 

in the analysis.  Three main changing patterns were 

observed, from centered to forward position, from 

centered to rearward position and stay centered.  All 

drivers tend to be more likely leaning forward during 

the first second of braking.  A significant age effect 

was observed (F(2, 405)=8.7, p<0.05) that both young 

and middle-aged drivers tend to more likely to lean 

forward after they stepped on the brake pedal when 

compared to older drivers (Figure 11).  

Figure 11: Age effect on the head position changing 

pattern 

COMPUTATIONAL MODELING 

In this study computational models were used to 

estimate the potential reduction of occupant injury 

risks with the integrated active and passive safety 

system comparing to those without such a system.  In 

particular, a DA or active safety system may reduce 

the delta-V of a crash, and at the same time may also 

affect the pre-crash occupant posture due to the hard 

braking before the crash.  Therefore, in this study, 

simulations were conducted with different pre-crash 

occupant postures under different delta-V levels, so 

that the effects from active safety system can be 

evaluated.  Furthermore, design parametric studies and 

optimizations were also performed under each 

combination of occupant posture and delta-V 

condition.  The minimal injury risks with the optimal 

design system in each crash condition were compared 

to those with the baseline (current) design. 

Consequently the injury risk reduction potential of an 

optimized design system considering the occupant 

posture and delta-V levels (two factors affected by the 

active safety system) can be estimated. 

Model Development and Validation 

As shown in Figure 12, a MADYMO ATD model and 

a MADYMO human model integrated in a generic 

vehicle and restraint system model were used as the 

baseline models to quantify the occupant injury 

outcomes.  The ATD model is the HIII 50th percentile 

male model, while the MADYMO human model is a 

rigid-body based human facet model representing a 

50th percentile male occupant.  The vehicle occupant 

compartment model, including the driver airbag, knee 

airbag, seat, steering wheel, instrument panel, and 

other interior components, was provided by Ford 

Motor Company, while the seat belt system model, 

including the webbing, retractor, pretensioner, and 

load limiter, is based on a production seat belt system 

provided by TRW. 

The HIII 50th ATD model has been rigorously 

validated against ATD calibration tests and sled tests, 

while the human model has been validated extensively 

at component level and full body level against 

volunteer (low to mid impact severity) and PMHS test 

data (mid to high impact severity) (TASS 2012). 

The ATD model, occupant compartment model and 

restraint system models were further validated against 

US-NCAP test data provided by Ford.  The 

comparison of the ATD and seat belt responses 

(horizontal and vertical head, chest, and pelvis 

accelerations, shoulder and lap belt forces, and chest 

deflection) between the test and simulation are shown 

in Figure 13.  Good correlation has been achieved. 
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(a) Driver compartment and ATD model    (b) Driver compartment and human model 

Figure 12: MADYMO ATD, human, driver compartment, and restraint system models 

Figure 13: Model validation against US-NCAP test data

Injury measures and risk curves between ATD and 

human models 

Because no cadaver tests are available with the Ford 

vehicle model, the human model responses in the 

specific vehicle model cannot be validated.  To ensure 

the validity of the interaction between the human 

model and the vehicle model, injury outputs from the 

ATD model and the human model were compared. 

In this study, injury risks for the head, neck, chest, and 

femur were calculated based on the injury risk curves 

shown in Table 2.  A single joint probability of injury 

(Eq 3) combining all four injury risks was also 

calculated as the main output, which is originally used 

for assigning the star rating in the US-NCAP tests. 

Pjoint=1- (1-Phead) x (1-Pneck) x (1-Pchest) x (1-Pfemur) (3) 
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Table 2: Injury risk curves used in this study 

HIII 50th ATD Model 50th Human Model 

Head 

(HIC15) 

𝑃ℎ𝑒𝑎𝑑(𝐴𝐼𝑆3 +) = ∅(
𝑙𝑛(𝐻𝐼𝐶15) − 7.45231

0.73998
) 

Where Ф=cumulative normal distribution 

Neck  

(Nij and 

tension/compression 

in kN) 

{

 

 𝑃𝑁𝑖𝑗(𝐴𝐼𝑆3 +) =
1

1 + 𝑒3.2269−1.9688𝑁𝑖𝑗

𝑃𝑇(𝐴𝐼𝑆3 +) =
1

1 + 𝑒10.9745−2.375𝑇

𝑃𝐶(𝐴𝐼𝑆3 +) =
1

1 + 𝑒10.9745−2.375𝐶

𝑃𝑛𝑒𝑐𝑘 = 𝑀𝑎𝑥(𝑃𝑁𝑖𝑗 , 𝑃𝑇 , 𝑃𝐶)

Chest  

(deflection in mm) 
𝑃𝑐ℎ(𝐴𝐼𝑆3 +) =

1

1 + 𝑒10.5456−1.568∗𝐷
0.4612

𝑃𝑐ℎ(𝐴𝐼𝑆3 +) =
1

1+𝑒10.5456−1.568∗(𝐷/1.5)
0.4612* 

Femur 

(force in kN) 
𝑃𝑓𝑒𝑚𝑢𝑟(𝐴𝐼𝑆2 +) =

1

1 + 𝑒5.795−0.5196𝐹

* A different chest injury risk curve was used for the human model to that used for the ATD model, because the

MADYMO human model is over-predicting the chest deflection.  The adjusted chest injury risk curve is based on a 

chest deflection comparison between the MADYMO human model and a finite element human model (THUMS 4.0). 

Using the adjusted injury risk curve, the human-model-predicted chest injury risks can better match those from the 

field.  More details on adjusting the chest injury risk curves are attached in the Appendix C. 

Table 3: Model predicted injury measures for ATD and human models in a 35mph frontal crash with different 

seating postures 

Pre-

crash 

posture 

Head Forward 

(–200 mm) 

Head Normal 

(0mm) 

Head Rearward 

(+60mm) 

Figure 

ATD Human ATD Human ATD Human 

Val. Prob. Val. Prob. Val. Prob. Val. Prob. Val. Prob. Val. Prob. 

HIC 

Phead 
206 0.20% 267 0.58% 166 0.08% 245 0.42% 309 1.01% 358 1.68% 

Chest D 

(mm) 

Pchest* 

19.2 1.19% 49.5 6.43% 19.8 1.30% 58.5 11.4% 21.0 1.54% 59.2 11.9% 

NIJ 

Pneck 
0.35 7.32% 0.32 6.96% 0.34 7.19% 0.41 8.20% 0.33 7.06% 0.42 8.38% 

Femur F 

(kN) 

Pfeumur 

1.55 0.68% 4.03 2.41% 1.27 0.59% 2.46 1.08% 1.00 0.51% 3.78 2.13% 

Pjoint* 9.23% 15.54% 9.00% 19.90% 9.87% 22.33% 

* Different chest injury risk curves were used between the ATD and the human model, and Pneck was removed from

the Pjoint in the following parametric study. 
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Table 3 shows the simulated ATD and human injury 

outputs and their associated injury risks with three 

seating postures (head forward 200 mm, normal 

driving posture, and head rearward 60 mm) under a 35 

mph NCAP crash pulse.  The head (HIC) and neck 

(NIJ) injury outcomes are consistent between the ATD 

and human models, but the chest deflection and femur 

forces are significantly different.  In particular, the 

human model predicted much higher chest deflection 

and femur forces than those from the ATD model.  A 

recent study by Digges et al. (2013) compared the 

injury risks in 302 NCAP tests and the injury risks for 

NCAP-like crashes in the NASS-CDS database as 

shown in Table 4.  The NCAP tests significantly 

underestimated the chest and knee-thigh-hip (KTH) 

injury risks.  For this reason, the higher chest 

deflection and femur forces predicted by the human 

model may represent the field data better than the ATD 

model.  The MADYMO human model significantly 

over-estimated the chest injury risks, if the same chest 

injury risk curve as that used for the ATD was applied. 

Therefore, the chest injury risk curve was adjusted for 

the MADYMO human model to better match the field 

data.  Specifically, the chest deflections predicted by 

the MADYMO human model was scaled down by 1.5 

times for injury risk calculation.  Details on chest 

injury risk curve adjustment are attached in the 

Appendix C. 

Furthermore, results in Table 3 and Table 4 also show 

the following trends: 

 Both the ATD and human models showed that a

normal driving posture led to the lowest HIC

value among three postures, while postures

beyond normal would increase the HIC value.

 Both the ATD and human models showed that a

posture with a more rearward head location

increased the chest deflection.

 The head location did not affect NIJ-associated

neck injury risks significantly, and such risks

were generally too high compared to the field

data.  As a result, in the following parametric

studies, Pneck was removed from the equation to

calculate Pjoint.

 Even though human model predicted higher KTH

injury risks than the ATD model, they are still

much lower than those in the field.

 The ATD model predicted the lowest total injury

risk (Pjoint) in the normal driving posture, while

the human model predicted that the more

rearward the head, the higher the total injury risk

(Pjoint).

Table 4: Comparison of injury risks derived from 

NASS field data with those derived from NCAP tests 

(Driver Only) 

Body Region 
NASS Mid-

Bound 

NCAP 2011 

Risk Functions 

Neck-Spine 3+ 0.70% 7.90% 

Head-Face 3+ 3.2% 2.3% 

Chest 3+ 10.6% 6.8% 

Knee-Thigh-

Hip (KTH) 2+ 
14.0% 4.9% 

NCAP (Any) 20.9% 20.1% 

Note: Table from (Digges et al. 2013) 

Design parameters, crash pulses, and safety feature 

firing time 

Table 5 shows the parameters being used in the current 

study.  This list covers the design parameters related 

to the knee bolster, steering column, driver airbag, and 

seatbelt.  Occupant head position and vehicle delta-V 

are the two confounding parameters in the parametric 

study, which are related to the DA or active safety 

system.  The crash pulses used in this study are based 

on the real vehicle crash test data provided by Ford at 

different impact velocities as shown in Figure 14.  The 

airbag, steering column, and seatbelt pre-tensioner fire 

times at different impact velocities were also provided 

by Ford and are shown in Table 6. 

Figure 14: Crash pulses at different delta-Vs 

Parametric study setup 

To enable large-scale parametric analyses, an 

automated computer program were developed using a 

combination of MADYMO, ModeFRONTIER, and 

other in-house programs to vary the restraint 

configurations and conduct injury risk evaluations. 

Similar work has been done previously in optimizing 

restraint system for occupants with various ages and 

sizes (Hu et al. 2013a; Hu et al. 2013b).  In this study, 

3 crash speeds (35mph, 25mph, and 17mph) and 4 

occupant postures with different head locations 

(forward-200mm, forward-100mm, normal, and 

rearward-60mm) were simulated, which resulted in 12 
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parametric studies using the ATD model and another 

12 parametric studies using the human model.  The 

simulation framework for each parametric study was 

created in ModeFrontier, in which 10 design 

parameters were varied within the ranges provided in 

Table 5 and injury measures on the head, neck, chest, 

and lower extremities were estimated.  The injury 

measures of head, chest, and lower extremities were 

used to calculate the Pjoint.  In each parametric study, 

200 simulations were sampled using the Uniform 

Latin Hypercube Sampling (ULHS) method for a 

given occupant pre-crash posture and crash delta-V 

level.  This sampling method provides a uniform 

distribution of restraint conditions in the design space. 

In total, 2400 simulations were conducted with the 

MADYMO ATD model, and 2400 simulations were 

conducted with the MADYMO human model. 

Results of the parametric studies 

As an example, the ATD-model-predicted Phead 

(based on HIC) and Pchest (based on chest deflection) 

subjected to the 35mph crash pulse with 4 pre-crash 

postures are shown in Figure 15, in which the yellow 

star represents the baseline design, and the red star 

represents the optimum with the lowest Pjoint among 

the 200 restraint design configurations.  In the “normal 

driving” and “head rearward” postures, even though 

the baseline design did not provide the lowest Pjoint, 

they were very close to the parietal optimal line.  In 

other words, the baseline design could be considered 

as one of the optimal solutions in reducing the 

occupant head and chest injury risks in these two pre-

crash posture conditions.  The results shown in Figure 

15 confirmed that the baseline design has been 

optimized in the “normal driving” posture condition. 

On the other hand, the baseline design does not 

provide the optimal occupant protection when the 

driver is in “head forward” pre-crash postures.  Table 

7 shows the injury risks from the baseline design and 

the optimal design predicted by the ATD model for all 

12 delta-V*posture conditions. 

Table 5: Design parameters in the parametric study 

Variables Range 

Occupant Occupant head position from nominal (mm) -200 (forward) - +60 (rearward) 

Vehicle Crash Pulse Figure 14 

Knee 

Bolster 

Bolster stiffness scale 35% - 100% 

Bolster placement (m) nominal, -0.050, -0.075 

Steering 

Column 

Column force scale 30% - 100% 

Column stroke (m) 0.010 - 0.100 

Airbag 

Vent size scale 60% - 140% 

Fire time/delay (ms) * Table 6 

Tether length (m) 0.2032 - 0.3232 

Smiley tether length (m) 0.08 – 0.16 

Seatbelt 

Load Limit (kN) 2.0 – 4.0 

Pre-tensioner Firing time (ms) * Table 6 

Webbing length (mm)** Corresponding to the head location 

* - Airbag and seatbelt pre-tensioner firing time were varied with delta-V, but were not used to optimize the occupant

protection.  ** - The webbing length was adjusted based on the head/shoulder location for each simulation. 

Table 6: Airbag, steering column, and seatbelt pre-tensioner fire time (ms) 

Speed (mph) VPI APT RPT KAB DAB Stage 1 DAB Stage 2 
Adaptive Steering 

Column 

35 58.3 15.0 10.0 10.0 11.5 16.5 11.5 

25 48.1 17.5 17.5 22.5 

25 41.3 12.5 15.5 20.5 

22 46.4 19.5 20.5 25.5 

17 38.7 28.5 23.5 23.5 24.5 174.5 24.5 

12 30.7 26.0 27.0 177.0 27.0 

8 22.3 0.0 0.0 0.0 0.0 0.0 0.0 

*VPI: Vehicle Pulse Index, APT: Anchor Pre-tensioner, RPT: Retractor Pre-tensioner, DAB: Driver Airbag
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Figure 15: ATD-model-predicted Phead and Pchest for 200 designs under the 35 mph crash pulse 

Table 7: ATD model-predicted injury risks for the baseline and optimal designs 

Head Forward 

(–200mm) 

Head Forward 

(–100mm) 

Normal 

(0 mm) 

Head Rearward 

(+60mm) 

Baseline Optimal Baseline Optimal Baseline Optimal Baseline Optimal 

3
5

m
p

h
 

Phead 0.20% 0.01% 0.03% 0.03% 0.08% 0.10% 1.01% 0.64% 

Pchest 1.19% 0.73% 1.24% 1.01% 1.30% 1.33% 1.54% 1.64% 

Pneck 7.32% 6.49% 7.88% 5.76% 7.19% 8.31% 7.06% 6.47% 

Pfemur 0.68% 0.44% 0.65% 0.42% 0.59% 0.43% 0.51% 0.43% 

Pjoint 2.06% 1.17% 1.91% 1.44% 1.95% 1.85% 3.03% 2.69% 

2
5

m
p

h
 

Phead 0.42% 0.07% 0.06% 0.00% 0.06% 0.01% 0.18% 0.07% 

Pchest 0.90% 0.56% 1.07% 0.80% 1.28% 0.88% 1.00% 0.83% 

Pneck 7.32% 7.13% 7.19% 6.21% 7.06% 6.35% 6.68% 5.87% 

Pfemur 0.64% 0.54% 0.52% 0.46% 0.53% 0.45% 0.52% 0.45% 

Pjoint 1.94% 1.17% 1.65% 1.26% 1.86% 1.34% 1.69% 1.34% 

1
7

m
p

h
 

Phead 0.12% 0.00% 0.01% 0.00% 0.02% 0.00% 0.05% 0.02% 

Pchest 1.12% 0.58% 0.45% 0.29% 1.17% 0.49% 0.98% 0.39% 

Pneck 7.60% 5.95% 6.10% 5.72% 5.98% 5.19% 5.98% 5.38% 

Pfemur 0.48% 0.44% 0.46% 0.42% 0.47% 0.47% 0.47% 0.59% 

Pjoint 1.71% 1.02% 0.91% 0.71% 1.65% 0.95% 1.50% 0.99% 

Note: Pneck was not used to calculate the Pjoint, because it dominated the Pjoint and over-predicted the injury risks. 

As another example, the human-model-predicted 

Phead (based on HIC) and Pchest (based on chest 

deflection) subjected to the 35mph crash pulse with 4 

pre-crash postures are shown in Figure 16.  In the four 

parametric studies shown in Figure 16, the baseline 

designs were generally at a distance for the optimal 
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design.  Table 8 shows the injury risks from the 

baseline design and the optimal designs predicted by 

the human model for all 12 delta-V*posture 

conditions.

Figure 16: Human-model-predicted Phead and Pchest for 200 designs under the 35 mph crash pulse 

Table 8: Human model-predicted injury risks for the baseline and optimal designs 

Head Forward 

(–200mm) 

Head Forward 

(–100mm) 

Normal 

(0 mm) 

Head Rearward 

(+60mm) 

Baseline Optimal Baseline Optimal Baseline Optimal Baseline Optimal 

3
5

m
p

h
 

Phead 0.58% 0.32% 0.25% 0.11% 0.42% 0.34% 1.68% 3.05% 

Pchest 6.43% 3.64% 7.84% 4.87% 11.42% 5.86% 11.90% 7.71% 

Pneck 6.96% 7.42% 6.71% 6.91% 8.20% 5.87% 8.38% 5.98% 

Pfemur 2.41% 1.10% 2.12% 0.95% 1.08% 1.37% 2.13% 1.40% 

Pjoint 9.22% 5.01% 10.01% 5.87% 12.74% 7.46% 15.23% 11.78% 

2
5

m
p

h
 

Phead 0.84% 0.08% 0.12% 0.08% 0.05% 0.00% 0.04% 0.87% 

Pchest 3.95% 1.71% 4.29% 1.32% 5.57% 2.64% 4.82% 1.63% 

Pneck 7.07% 6.55% 6.53% 7.37% 7.72% 5.44% 7.68% 7.74% 

Pfemur 1.76% 0.86% 4.11% 1.19% 1.80% 1.30% 1.96% 1.18% 

Pjoint 6.43% 2.62% 8.33% 2.57% 7.31% 3.91% 6.73% 3.63% 

1
7

m
p

h
 

Phead 0.11% 0.00% 0.06% 0.00% 0.01% 0.00% 0.00% 0.00% 

Pchest 2.85% 0.84% 2.35% 0.88% 2.31% 0.91% 2.66% 0.70% 

Pneck 7.64% 6.13% 7.24% 5.71% 6.40% 5.37% 5.86% 6.22% 

Pfemur 1.29% 0.82% 2.70% 0.92% 2.00% 0.88% 1.64% 0.94% 

Pjoint 4.21% 1.66% 5.04% 1.79% 4.27% 1.79% 4.25% 1.64% 

Note: Pneck was not used to calculate the Pjoint, because it dominated the Pjoint and over-predicted the injury risks. 
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Figure 17  shows the injury risk reduction ratios at 12 

delta-V*posture conditions, which are calculated by 

the (Pjoint_baseline–Pjoint_optimal)/Pjoint_baseline. 

The ATD model estimated the injury risk reduction to 

be the lowest at the 35mph with normal driving 

posture, and in general, further beyond that condition 

would result in higher injury risk reductions.  The 

same trend cannot be found from the results using the 

human model.  Interestingly, both the ATD model and 

the human model showed that postures with more 

forward head locations tend to have higher injury risk 

reductions than those with head being more rearward. 

a) ATD Model Results

b) Human Model Results

Figure 17: Injury risk reduction ratios at different 

delta-V*posture conditions 

INJURY RISK REDUCTION ESTIMATES 

The field benefit evaluation combined results from the 

field data analysis, naturalistic driving data analysis, 

and the computational simulations.  The occupant 

posture distribution change and the delta-V 

distribution change due to a DA or active safety 

system have been estimated by the naturalistic driving 

data analysis and the field data analysis in the previous 

sections, and the potential injury risk reductions at 

different combinations of delta-V and occupant pre-

crash posture have also been estimated by an ATD 

model and a human model.  Therefore, the overall 

weighted injury risk reduction estimation of the 

integrated active and passive safety system can be 

estimated by the Eq 4: 

𝐼𝑛𝑗𝑢𝑟𝑦_𝑟𝑖𝑠𝑘_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜 =

∑ ∑ 𝑊𝑖𝑗 × |
𝑃𝑖𝑗𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑃𝑖𝑗𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑃𝑖𝑗𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
|   𝐷𝑒𝑙𝑡𝑎𝑉_𝑙𝑒𝑣𝑒𝑙𝑠

𝑗=1
𝑃𝑜𝑠𝑡𝑢𝑟𝑒_𝑙𝑒𝑣𝑒𝑙𝑠
𝑖=1 (4) 

where Wij is the weighting matrix developed in the 

field data analysis and the naturalistic driving data 

analysis.  Pij_optimal is the lowest probability of injury 

with the optimal passive safety design for an occupant 

in the given crash condition, while Pij_baseline is the 

probability of injury with the baseline design for the 

occupant in the same crash condition.  With different 

assumptions for the effectiveness of a DA or active 

safety system in reducing delta-V, different Wij can be 

provided.  In this equation, the summation can be 

changed to integration, if enough data points are 

collected. 

To calculate the total injury risk reduction ratio, the 

injury risk reductions at different delta-Vs based on 

the delta-V distribution in Figure 5 were first 

weighted.  Because the current MADYMO models 

cannot provide age effects, the three age groups in 

Figure 5 were combined.  The weighted injury risk 

reduction ratios at different delta-Vs were combined in 

each head location.  Finally, a weighted average of the 

injury risk reduction ratio was computed for the 

integrated active and passive safety system across the 

four head positions was computed. 

The weights for head position were taken from the 

naturalistic driving data analysis (Figure 8).  However, 

in that analysis, the amounts of forward and rearward 

excursion were not measured.  The rearward excursion 

made up 11.67% of total time after braking and its 

effect was represented by the +60 head-excursion 

results.  No head excursion was found 67.08% of the 

time, and forward head excursion occurred 21.25% of 

the time.  This proportion was somewhat arbitrarily 

assigned 1/3 (or 7.08%) to the -200mm conditions and 

2/3 (or 14.17%) to the -100mm condition.  The results 

do change with head location, but this allocation is not 

expected to have a substantial effect on the final result. 

Table 9 contains the risk reduction ratio for each head 

location and the overall risk reduction ratio based on 

the weighted average of the four head-excursion levels 

(as described above). The overall risk reduction is at 

17% based on the ATD model and 48% based on the 

human model. 
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Table 9: Estimated percent reduction of total injury 

risks 

Head location Percent 

Injury Risk 

Reduction 

ATD 

Model 

Human 

Model 

Head forward 

(200mm) 
7.08% 43% 58% 

Head forward 

(100mm) 
14.17% 25% 53% 

Head neutral 67.08% 14% 47% 

Head rearward 

(60mm) 
11.67% 13% 44% 

Overall weighted 

average 
17% 48% 

DISCUSSION 

The application of a DA or active safety system may 

affect the delta-V and occupant pre-crash posture in 

motor vehicle crashes.  In this study, a method 

combining field data analysis, naturalistic driving data 

analysis, and computational simulations was 

developed to investigate the effect of a DA or active-

safety-system-induced delta-V and occupant pre-crash 

posture changes on occupant injury risks in frontal 

crashes. 

In the field data analysis, the basic assumption in this 

study is that the DA or active safety system can avoid 

20% of the frontal crashes.  In the literature, the 

forward collision warning system is the most 

frequently studied pre-collision system.  A review of 

intelligent transport systems by Bayly et al. (2007) 

estimated the percentage of frontal crashes that can be 

prevented by such a system varied significantly 

(ranging from 7% to 80%) from study to study.  Two 

recent studies by Kusano and Gabler (2010, 2012) 

provided more conservative estimates, predicting that 

only 0-14% of the frontal crashes can be prevented by 

the pre-collision systems.  Based on the literature, we 

believe that the assumption of 20% of the frontal 

crashes being prevented by the DA or active safety 

system is reasonable.  However, different percentage 

values can be used by the same method developed in 

this study, which will likely affect the final injury risk 

reduction estimation. 

In this study, naturalistic driving data were used to 

quantify the occupant head location change during a 

hard braking event, and the resulted head location 

patterns were used to estimate the potential advantage 

of an integrated active and passive safety system. 

Therefore, this study only focused on a forward 

collision warning system, not on an autonomous 

braking system.  While a forward collision warning 

system is designed to warn the driver before a potential 

crash, autonomous braking system is designed to 

brake, even if there is no driver input.  If the driver is 

not aware of the brake, he/she will likely move 

forward in the braking event due to the body inertia. 

As a result, the head location changes will be very 

different to those estimated in the current study. 

In this study, difference of injury risk reduction 

estimates existed between the ATD model (predicted 

17% injury reduction) and the human model (predicted 

48% injury reduction), but they have also shown some 

consistent trends.  In particular, both models predicted 

that the injury reduction is higher when the head is 

closer to the steering wheel.  This is likely due to two 

reasons: 1) The normal driving posture is generally 

optimized and the head location in the “head 

rearward” condition is only 60 mm rearward from the 

normal driving location, therefore the room for 

reducing the injury risk is limited in those conditions; 

2) the current restraint design space is constrained by

regulatory and public domain crash test protocols that 

mainly focus on normal driving posture, thus design 

parameters, such as the airbag tether length in the 

baseline design is very close to the maximum.  A 

larger range of design parameters with adaptive 

features specifically for more rearward occupants may 

further improve the injury risk reduction potential. 

Using the ATD model, in a 35 mph crash, the baseline 

restraint design is very close to the optimal protection 

to an occupant in a normal driving posture, because it 

is the NCAP crash condition.  However, the same 

restraint system is not optimal when the human model 

is used.  Given the fact that the main target of the 

baseline restraint design is to reduce the injury risks 

from the ATD, it is reasonable that higher injury risk 

reduction was estimated by the human model than the 

ATD model.   

There are several limitations in this study.  First, we 

only used a single vehicle and pure frontal barrier 

crash conditions.  A wider range of vehicle models and 

crash conditions may cover the field conditions better. 

Second, in our naturalistic driving data analysis, the 

head positions were only categorized into groups, but 

the exact positions were not quantified.  Further 

research is necessary to accurately quantify the head 

positions before and after breaking events.  Third, both 

the ATD model and human model have certain 

limitations in terms of injury risk prediction. 

Compared to the field data, the ATD model under-

estimated the chest and KTH injury risks, while the 

human model has to adjust the chest injury risk curves 
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to match the field data.  Moreover, active muscle 

forces were not yet considered in the current study, and 

future studies using human models with active muscle 

forces (Meijer et al. 2013; Osth et al. 2015) might be 

necessary to better predict the injury risks, especially 

for  lower extremities.  Lastly, occupant stature, 

weight, gender, and age variations were not considered 

in this study.  Because of the limitations of the 

MADYMO human model, such effects are very 

difficult to be considered in the current study.  Future 

study using parametric human finite element models 

(Hu et al. 2012; Schoell et al. 2015; Shi et al. 2015; 

Wang et al. 2015) may be necessary to further 

investigate the potential field capability of the 

integrated active and passive safety system. 

Nonetheless, this study demonstrated promising 

potential of an integrated active and passive safety 

system for reducing injury risks in frontal crashes. 

CONCLUSIONS 

In this study, a method was developed using the field 

data to estimate the delta-V distribution change by 

assuming a 20% crash avoidance by DA or active 

safety systems.  The patterns of driver head location 

changes in hard braking events were estimated based 

on a naturalistic driving data analysis.  It was found 

that drivers’ head position were mostly in the center 

position before the braking onset, while the percentage 

of time drivers leaning forward or backward were 

increased significantly after the braking onset. 

Significant age effect was also observed.  Simulations 

were performed with MADYMO HIII ATD model as 

well as the MADYMO human model to investigate 

potential injury risk reduction if the restraint system is 

optimized to adapt to different delta-Vs and occupant 

pre-crash postures.  By combining the results for the 

delta-V and head position distribution changes, a 

weighted average of injury risk reduction of 17% and 

48% was predicted by the 50th percentile ATD model 

and human body model, respectively, assuming the 

restraint system can adapt to the specific delta-V and 

pre-crash posture.  This study demonstrated the 

potential capability of integrated active and passive 

safety systems for injury risk reduction in frontal 

crashes. 
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APPENDIX A: A METHOD FOR ESTIMATING DELTA-V DISTRIBUTIONS FROM INJURY 

OUTCOMES IN CRASHES 

The proposed approach to estimate delta-V depends on two assumptions. First, the delta-V distribution can be modeled 

with a parametric form that will hold for different classes of crashes, though each class of crashes will have different 

parameters.  Second, the relationship between delta-V and injury is fixed for a given impact direction, and that 

relationship will hold for the general population of vehicles involved in impacts in the same direction. 

The estimation process itself requires three elements: 

1) Injury risk curve for a specific damage location

2) Distributional form for delta-V

3) Injury distribution for occupants in target crashes

The injury risk curve captures the relationship between delta-V and injury.  Delta-V describes the severity of the crash 

as experienced by a given vehicle, and injury risk is related to crashworthiness.  Since crashworthiness differs for 

different parts of the vehicle structure, this relationship must be modeled for a specific crash direction.  Since CDS 

contains delta-V estimates as well as multiple measures of injury severity (AIS and KABCO), it can be used to develop 

injury risk curves.   

Choosing an appropriate statistical distribution reduces the number of parameters needed to define the model.  In 

general, a lognormal distribution describes the CDS delta-V distributions well.  There should be fewer parameters in 

the delta-V distribution than there are levels of injury. The lognormal has two free parameters.  

The distribution of injury levels is the data-based target of the fitting process. The injury distribution is the percentage 

of occupants who sustain injury at each level. Since there are several available injury scales (e.g., AIS, KABCO), it is 

important to use the same injury outcome measure for both the injury risk curves and the empirical injury distribution. 

When using GES or FARS, the injury coding system will be the KABCO scale. Even though AIS is a more precise 

injury scoring system, the injury risk curves from CDS should predict risk on the KABCO scale. If AIS scoring is 

available in the injury data source (e.g., a hospital database that has injury outcome but few or no crash details), CDS-

based risk curves should predict risk of AIS injury levels instead.  In this paper, only KABCO-based estimation is 

demonstrated. 

Estimation 

The first step in estimation is to sort crashes by damage areas in a manner that can be achieved in both CDS and GES. 

The second step is to generate the risk curves for the each crash type.  In this paper, the risk curves are based on 

cumulative logistic regression using log-transformed delta-V as the predictor and KABCO injury level as the outcome 

variable.  Cumulative logistic regression is an extension of binary logistic regression, which fits one or more predictors 

to a binary outcome. The logistic regression model is given by Equation A1. 

𝑝 = 1 1 + exp (−(𝛽0 + ∑ 𝛽𝑖x𝑖))𝑖
⁄ (A1) 

where, p is the estimated probability of the outcome (e.g., injury), 

0 is the intercept, and 

i are the estimated coefficients of each predictor, xi, i=1..r where r is the number of predictors in the equation 

Cumulative logistic regression is essentially the same as logistic regression except that it allows more than two ordered 

categories of outcome.  The model creates a series of increasing cutpoints among the ordered categories and fits a 

single slope parameter for each xi and a separate intercept for each cutpoint.  Thus when KABCO is the outcome 

variable and ln delta-V is the predictor, the model fits a single slope parameter for ln delta-V and separate intercepts 

for four cutpoints: K (vs. ABCO), KA (vs. BCO), KAB (vs. CO), and KABC (vs. O).  The advantage of the cumulative 

model (rather than other possible choices such as generalized logit) is that the predicted risk of more severe injury is 

always lower than the predicted risk of less severe injury, which generally describes real-world injury patterns. 

The joint distribution of each injury level in the database is the product of the risk of injury at each delta-V and the 

probability of experiencing that delta-V in a crash.  As an example, Figure A1 shows a lognormal delta-V distribution 

with parameters =2.0 and =0.4 that might represent the probability of experiencing a frontal crash at each delta-V. 
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Figure A2 shows the same delta-V distribution plotted with the KA injury risk curve and their joint distribution (the 

product at each delta-V value).  Figure A3 shows the joint injury distribution for each injury level. 

Figure A1: Example of lognormal delta-V distribution. In this graph, =2.0 and =0.4. 

Figure A2: Injury risk curve for KA injuries, distribution of crash severity, and the distribution of injury KA injury 

probability (the product of injury risk and crash severity distribution.) 

Figure A3: Joint risk of being in a crash with a given delta-V and injured (at each injury level). 
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For each of the joint distributions in Figure A3, the area under the curve represents the total risk of the group of injury 

levels (e.g., KAB).  Since each outcome is cumulative, the area between the curves represents the total risk of a specific 

(non-cumulative) outcome (e.g., B injury only). The remaining probability (1 minus probability of any injury) is the 

probability of no injury.  Thus the proportion of injuries among K, A, B, C, and O can be estimated using these 

products of the injury risk model and a given delta-V distribution.   

If the injury-risk curves based on CDS models are considered fixed, then the only free parameters in the system 

illustrated in Figure A3 are those that describe the delta-V distribution.  If the KABCO injury distribution is known 

for a dataset but the delta-V distribution is not, different values of μ and σ defining the delta-V distribution can be 

tested until the product of the injury risk and delta-V curves come as close as possible to the target (data-based) 

proportions of K, A, B, C, and O injuries.   

Because the injury distribution has four degrees of freedom (the fifth injury level is constrained to sum to 1) and the 

delta-V distribution has two degrees of freedom, not all injury distributions can be perfectly recovered with this 

system. As a result, we need a loss function to score the match between the injury distributions in the target dataset 

and those predicted by the product of injury risk and delta-V distribution.  

The chi-square test statistic is a common measure of correspondence between model and data for a contingency table 

and is suitable for this application.  The equation for the chi-square statistic is given in Equation A2.  The parameters 

that minimize this loss function are selected for the delta-V distribution that results from the estimation process. 

Χ2 = ∑
(𝑜𝑖−𝑒𝑖)

2

𝑒𝑖
𝑖 (A2) 

where 

o is the observed cell proportion,

e is the expected cell proportion (from lognormal model), and 

i sums over the five cells in the table (one for each injury level) 

Validation 

The performance of the method is tested in two ways. First, a simulation explores issues related to bias and required 

sample size for use of the method.  Each run of the simulation involved generating a sample of simulated injury levels 

for 100, 1000, or 5000 cases and then using the delta-V estimation method described above to estimate the parameters 

of the underlying delta-V distribution.  

Each case in the simulation was generated in two steps, each of which corresponds to the model assumptions 

underlying the method. First, a value of delta-V was selected at random from a lognormal distribution with parameters 

=3.0 and =0.7. Next, an injury level on the KABCO scale was selected at random based on the risk model developed 

from CDS and the delta-V value selected in the first step. Once a simulated sample was generated, the empirical 

distribution of injury levels for that sample was returned. Based only on the distribution of the five injury levels, along 

with the fixed injury risk curves, the method described above was used to estimate the parameters of the delta-V 

distribution for each simulated sample.  The process was repeated 100 times for each sample size. 

Second, to explore the performance of the method on real data, the model was used to estimate the parameters of the 

delta-V distribution for frontal cases in the CDS database (where delta-V distribution is known.)  The outcome of the 

injury-based estimation process is compared to both a direct sample estimate of the parameters of the lognormal delta-

V distribution from CDS and the purely empirical (non-parametric) distribution of delta-V from the same cases. 

These validation efforts do not push the boundaries of the underlying assumptions of the model.  The simulation uses 

the assumed model to produce test data and the CDS comparison is to the same data from which the injury risk curves 

are developed. However, there are infinitely many ways the model can be wrong relative to real-world data, so it is 

appropriate to limit the scope of this paper to testing the model under friendlier conditions.  Future work should explore 

the robustness of the model to violations of its underlying assumptions. 
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Validation Results 

Delta-V Distribution Form  

The typical method of testing the fit of a distributional form to data is the Kolmogorov-Smirnoff test.  However, this 

method does not work with a stratified, weighted sample.  Instead, graphical methods were used to look at the 

relationship between the delta-V distribution for frontals (defined as general area of damage (GAD1) equal to “F”) in 

CDS and a variety of candidate distributions.  

The lognormal distribution fits the delta-V distribution for classes of crashes fairly well. Figure A4 shows how ln 

delta-V for frontals in CDS is related to the normal distribution.  (Comparing the log of delta-V to the normal 

distribution is equivalent to comparing delta-V to the lognormal distribution.) Specifically, the proportion of the delta-

V distribution for frontal crashes was computed for bins in 1 mph increments.  This proportion was cumulated and 

compared to the z-score associated with the cumulative proportion of each delta-V bin.  The straight line in Figure A4 

between the normal variate and ln(delta-V) indicates that the lognormal distribution is a good fit to delta-V in frontals 

in CDS.  Additional investigation of delta-V distributions indicated that the lognormal is a good fit for other crash 

modes as well. The gamma distribution was also a good candidate but was not used in this paper. 

Figure A4: Plot of normal variates for each quantile vs. ln delta-V (in mph). 

Injury Risk Curves 

Injury risk curves using cumulative logistic regression to identify risk of KABCO injury outcome as a function of 

delta-V for vehicles with frontal damage in CDS are shown in Table A1 and Figure A5.  There is a single coefficient 

for log-transformed delta-V and a separate intercept for each level of injury (cumulated).  No other potential injury 

predictors were considered in the model, so they reflects the distribution of age, gender, and belt use found in CDS 

and GES.  The risk curves have a common slope, and each successive intercept predicts the probability of a given 

level or worse injury.  For example, the “B” intercept of -4.9928 determines the risk of K, A, or B injury as a function 

of delta-V in a frontal impact.  

Table A1: Coefficients and Fit Statistics for Injury Model in Frontal Impacts 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard 

Error 

Wald 

Chi-Square 
Pr > ChiSq 

Intercept K 1 -9.4901 0.3145 910.4918 <.0001 

Intercept A 1 -6.0136 0.6559 84.0483 <.0001 

Intercept B 1 -4.9928 0.3382 217.9715 <.0001 

Intercept C 1 -3.9414 0.2559 237.2877 <.0001 

Ln (delta-V mph) 1 1.4070 0.1056 177.6847 <.0001 
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Figure A5: Cumulative logistic risk models for KABCO injuries in frontal impacts.  Each line represents the risk of 

the group of injury levels for a given delta-V value. 

Simulation 

The arbitrary parameters of the simulation were =3.0 and =0.7, and three sample-size scenarios were tested for the 

injury data: 100, 1000, and 5000 cases. Figure A6 shows the distribution of the estimated mean of the delta-V 

distribution for simulated samples sizes of 100, 1000, and 5000 crashes.  The estimation process becomes more precise 

as sample size goes up.  In addition, there is no evidence of bias as the average estimate for all three sample sizes was 

3.0. 

Figure A6: Simulation results for estimation of mean delta-V.  The true value is 2.0. 

Figure A7 shows the distribution of estimated standard deviation of the delta-V distribution for simulated samples 

sizes of 100, 1000, and 5000 crashes.  As with estimating the mean value, the estimation process becomes more precise 

as sample size goes up.  However, standard deviation is more difficult to estimate precisely and the results are more 

varied. At a sample size of 100, the estimation method frequently reaches the end of the search space, suggesting that 

the estimates are not stable for such a small sample size.  The standard deviation estimates for sample sizes of 100, 

1000, and 5000 were 0.65, 0.69, and 0.70, respectively.  This suggests that the approach is unbiased for standard 

deviation as well, but sufficient sample size is required to have a stable estimate.   
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Figure A7: Simulation results for estimation of standard deviation of delta-V.  The true value is 0.7. 

Estimation of CDS Delta-V Distribution 

When the estimation approach was applied to the injury distribution from CDS frontals, the resulting parameters to 

define the delta-V distribution were =2.47 and =0.43.  The parameters developed from the actual data were =2.43 

and =0.44.  Table A2 shows the empirical (weighted) distribution of injury for CDS frontals (with non-missing delta-

V).  The last column shows the estimated injury distribution, based on the best-fit lognormal parameters and the 

embedded risk models for frontal crashes.  The proportions match quite well with 2=xxx. 

Table A2: Empirical and Estimated Proportion of KABCO Injuries for Frontals in CDS 

Injury Level Empirical Proportion of Cases Estimated Proportion of Cases (=2.47, =0.43) 

K 60.59% 60.62% 

A 19.82% 19.88% 

B 11.20% 11.08% 

C 8.10% 8.12% 

O 0.29% 0.30% 

Figure A8 shows three distributions for comparison.  The solid black line is the weighted cumulative distribution of 

delta-V from frontal cases in CDS.  The dashed gray line shows the lognormal distribution calculated directly from 

the data in CDS.  The dotted gray line shows the lognormal distribution estimated using the injury-risk-curve approach. 

The correspondence of all three distributions is quite close, suggesting that the injury-based approach proposed in this 

paper works well.   

Figure A8: Three distributions of delta-V for frontal crashes in CDS.  Solid line represents empirical delta-V 

cumulative curve.  Dashed line is the lognormal distribution estimated directly from the data, and the dotted line is 

the lognormal distribution estimated only from the injury distribution. 
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APPENDIX B: DETAILS OF COMPUTATION FOR RANDOM-SHIFT MODEL 

Hu et al. / Stapp Car Crash Journal 59 (November 2015) pp. 269-296 293



Hu et al. / Stapp Car Crash Journal 59 (November 2015) pp. 269-296294



APPENDIX C: CHEST DELFECTION COMPARISON BETWEEN MADYMO AND THUMS HUMAN 

MODELS 

Because it is almost impossible to use whole-body cadaver tests with the restraint systems used in this study to validate 

the MADYMO human model, in this study a finite element human model (THUMS 4.0) was used to cross-validate 

the chest deflection results from the MADYMO human model.  Because the finite element model was not available 

for the same vehicle as used in the MADYMO model, a rear-seat model that was developed and validated in a previous 

study in both MADYMO and Ls-dyna was used.  

Figure C1 shows the MADYMO and Ls-dyna human models in a rear-seat compartment.  The rear-seat and seat belt 

models in both formats have been validated against a 35 mph sled test using a HIII 50th ATD.  In the validation sled 

test, the floor pan of the vehicle under the rear seat was removed and replaced with a simple sheet metal box section, 

reinforced with foam board inside.  Therefore, the seat in the MADYMO and Ls-dyna models were tuned to match 

the test results.  The rear-seat model was integrated with a validated TRW three-point seatbelt model, which includes 

a load limiter, retractor pre-tensioner, and anchor pre-tensioner.   

Figure C1: MADYMO (left) and Ls-dyna (right) human models in a rear-seat compartment 

In this study, three MADYMO simulations and three Ls-dyna simulations under the restraint conditions described in 

Table C1.  The chest deflections in each simulation were measured at four locations on the chest, and the results are 

shown in Table C1 as well.  The ratios between the MADYMO-model-predicted chest deflection and THUMS-

predicted chest deflection were from 1.18 to 4.98, while the ratios for the maximal chest deflections were from 1.18 

to 1.44.  In this study a ratio of 1.50 was decided to be used to scale down the chest deflections predicted by the 

MADYMO human model.  This adjustment has resulted in much better match between the simulated chest injury 

risks and those in the field as shown in Table C2.   

Table C1: Chest deflection comparison between MADYMO human model and THUMS 

Restraint Condition ChestD (mm) MADYMO model THUMS 
Ratio 

MADYMO/THUMS 

6kN load limit 

Retractor pretensioner 

Buckle pretensioner 

ChestD1 50.3 35.5 1.42 

ChestD2 43.3 17.8 2.43 

ChestD3 39.3 17.7 2.22 

ChestD4 29.3 7.6 3.86 

4kN load limit 

Retractor pretensioner 

ChestD1 50.6 35.1 1.44 

ChestD2 41.7 20.5 2.03 

ChestD3 31.7 9.8 3.23 

ChestD4 28.4 5.7 4.98 

2.5kN load limit 

Retractor pretensioner 

Buckle pretensioner 

ChestD1 37.1 31.4 1.18 

ChestD2 30.1 18.8 1.60 

ChestD3 29.0 16.8 1.73 

ChestD4 26.5 10.0 2.65 

Hu et al. / Stapp Car Crash Journal 59 (November 2015) pp. 269-296 295



Table C2: Human-model predicted chest injury risks at different crash speeds 

Velocity 
ChestD 

(mm) 
Pchest 

ChestD-Scaled 

(mm) 
Pchest-Scaled 

AIS3+ Chest Injury Risks using 

NASS-CDS data 

17mph 36.1 8.4% 24.1 2.3% 1.2%-2.6% 

25mph 47.5 16.8% 31.7 5.6% 5.0%-10.2% 

35mph 58.5 39.5% 39.0 11.4% 8.7%-17.1% 

The NASS-CDS result was based on a recent UMTRI field analysis, which is not published yet. 
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