Modeling the transport of nanoparticles from combined sewer overflows in the Buffalo River
Angshuman M Saharia, Dr. Zhenduo Zhu, Dr. Joseph F. Atkinson
Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, United States

Introduction
- The sources of nanoparticles (NPs) into the surface water can be agricultural, industrial, consumer products, and medical applications.
- Nanoparticles are widely used in home disinfectants and medical products for its antibacterial property. Up to 10,000 tonne Titanium dioxide nanoparticles (TiO2NPs) per year get produced.
- In the Buffalo River, most of the TiO2NPs are transported through the combined sewer overflows (CSOs) from the Buffalo city.
- The river has three tributaries: Cayuga Creek, Buffalo Creek, and Cazenovia Creek.
- The Buffalo River drains a 447-square-mile (1,158 sq, km) watershed in New York state, emptying into the eastern end of Lake Erie at the City of Buffalo.

Objectives
- Building the three-dimensional Buffalo River hydrodynamic model using the Environmental Fluid Dynamics Code (EFDC).
- Linking the Buffalo city Storm Water Management Model (SWMM) to the hydrodynamic model.
- Developing water quality model of the Buffalo River to analyze where nanoparticles from combined sewer overflows may migrate.

Methodology
- Boundary conditions and initial model setup for the hydrodynamic model.
- Simulation of CSO discharges for the Buffalo city using precipitation data in the SWMM model.
- Collection of the Buffalo River elevation and flow data (time steps vary from 5 minutes to 15 minutes) from the LinnoTech for the period of 5th October 2008 to 15th November 2008.
- Water quality modeling for the TiO2NPs using two scenarios:
 Scenario I- 100 PPB (parts per billion) TiO2NPs in CSOs are considered.
 Scenario II- 200 PPB (parts per billion) TiO2NPs in CSOs are considered.

Mesh used in the modeling

Preliminary Results and Discussions
Model performance
- Model performance is evaluated for water level and the velocity for the Buffalo River.

Hydrodynamic simulation results
- The hydrodynamic simulation results at 10th October 2008, 00:00 and 01:00 AM:
 - Figure 1: Buffalo River connected to the CSO outfalls
 - Figure 2: Buffalo River mesh, 2683 horizontal grids x 8 vertical layers
 - Figure 6: TiO2NPs simulation result for scenario I using EFDC
 - Figure 7: Simulated TiO2NPs concentration for scenario I and scenario II

Future Works
- Measurement of TiO2NPs from Buffalo city CSOs.
- Silver and zinc oxide nanoparticles modeling in the Buffalo River.
- The use of the model to evaluate the effectiveness of different CSO control strategies for reducing the transport of nanoparticles to the river.

Acknowledgment. A. M. Saharia was supported by the New York Energy Research and Development Authority, project 10016Z. We also acknowledge Dr. Mohamed Badrudeen from South Carolina for providing information on NPs concentrations, LinnoTech for providing measurement data, Buffalo Sewer Authority for providing the SWMM model data, and UB CCR.