LID IMPLICATION FOR URBAN RUNOFF MANAGEMENT IN RESPONSE TO CLIMATE CHANGE IMPACTS

Seyed Hamed Ghodsi
Prof. Zhenduo Zhu
Prof. Reza Kerachian
Dr. Zahra Zahmatkesh
Dr. Erfan Goharian

University at Buffalo
School of Engineering and Applied Sciences
Urban runoff management

- Previous work
 - *Journal of hydrology*
 - *Science of the Total Environment*

- Current research
 - Climate change impact on urban runoff management

Question 1: Does the optimum solution based on the current situation work well for the possible future rainfall scenarios?

Question 2: Is it necessary to develop another approach which can consider all of the possible future scenarios together (multi-event optimization)?
<table>
<thead>
<tr>
<th>Traditional view</th>
<th>Methodology</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Drainage system design</td>
<td>• Update the design hydrograph</td>
<td></td>
</tr>
<tr>
<td>o Historical hydrologic data</td>
<td>• Use general circulation models (GCMs)</td>
<td></td>
</tr>
<tr>
<td>o Frequency analysis</td>
<td>• Downscaling methods</td>
<td></td>
</tr>
</tbody>
</table>

Climate change

• Alter the pattern (intensity and duration)

Develop a Simulation-Optimization model

International financiers redirect funding to climate change
https://www.developmentafrica.net
Analyzing climate change impacts on watershed runoff management

1- Data collection and processing
2- Rainfall-runoff model
3- Urban runoff management
4- Climate change impact modeling
5- Optimization model
Introduction

Methodology

Result
Low impact developments (LIDs)

Permeable pavement (PrPv)

Vegetative swale (VeS)

Infiltration trench (InTr)

Bio-retention cell (BRc)

https://nacto.org

http://www.missionengineersinc.com

https://ready.nola.gov/green-infrastructure

https://www.lid-stormwater.net/biolowres_specs
Climate change impact modeling

- **GCMs**: the mathematical coupled models which simulate the response of earth systems to changes in the greenhouse gases concentrations
- **CFM**: incorporate information of local observed rainfall
 - High resolution observational data
 - Regional-scale

Climate change impact on the design rainfall

<table>
<thead>
<tr>
<th>Design rainfall</th>
<th>Observed rainfall</th>
<th>Future rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Value (mm)</td>
<td>Absolute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min P</td>
</tr>
<tr>
<td>Scenario</td>
<td>S1*</td>
<td>S2</td>
</tr>
<tr>
<td>Mean</td>
<td>36.6</td>
<td>24.5</td>
</tr>
<tr>
<td>Difference (%)</td>
<td>0%</td>
<td>-33%</td>
</tr>
<tr>
<td>Maximum</td>
<td>S8</td>
<td>S9</td>
</tr>
<tr>
<td>Value (mm)</td>
<td>54.0</td>
<td>37.6</td>
</tr>
<tr>
<td>Difference (%)</td>
<td>0%</td>
<td>-30%</td>
</tr>
</tbody>
</table>

* Scenario
Optimization model

- Single objective function
- Genetic algorithm (MATLAB software)

Objective function:
- \(\text{Minimize } F(x) = [w_1 \times \text{Obj 1} + w_2 \times \text{Obj 2}] \)
- \(\text{Obj 1} = \frac{V(x) - V_{\text{min}}}{V_{\text{max}} - V_{\text{min}}} \), \(\text{Obj 2} = \frac{C(x) - C_{\text{min}}}{C_{\text{max}} - C_{\text{min}}} \)

- \(V \): runoff volume
- \(C \): implementation cost of LIDs
- \(w_1 = w_2 = 0.5 \)

- Decision variable: location and area of each LID (40)
- Constraints: maximum and minimum possible area of LIDs in each subcatchment
Objective function

- **Rainfall (mm/day)**
- **Volume (10^6 lit)**

- Objective function value

- Graph showing the relationship between volume and rainfall.
Question 1:
Does the optimum solution based on the current situation works well for the possible future rainfall scenarios?
Question 2:

Is it needed to develop another approach which can consider all of the possible future scenarios together (multi-event optimization)?

$$\text{Minimize } \sum_{s=1}^{s=14} F(x) = [w_1 \times Obj^1_s + w_2 \times Obj^2_s]$$

![Graph showing objective function values against rainfall (mm/day)]

- **Main:** 4.2084
- **Rainfall 1 Constant:** 4.1957
- **Rainfall 8 Constant:** 4.1764
- **OptimAll:** 4.1431

Running time: 14 times more
Conclusion

• Climate change can alter our final urban runoff management decisions (location and area of LID types)

• The significance and importance of the result change

• Based on the objective function definition
Thank you
Rapid urbanization
Unplanned development of lands
Population growth
Aged drainage systems
Climate change

Surface runoff management
Optimization result

S2 (24 mm/day)

S8 (54 mm/day)

S14 (90 mm/day)

(1. VeS 2. BRc 3. PrPv 4. InTr)

S1 (36.6)
Optimization result

(1. VeS 2. BRc 3. PrPv 4. InTr)
Optimization result

![Graph showing optimization results](image-url)
Total area: 19.77 km²
<table>
<thead>
<tr>
<th>Sub*</th>
<th>Area (hectare)</th>
<th>Width (m)</th>
<th>Slope (%)</th>
<th>Impv** (%)</th>
<th>Land Use***</th>
<th>Sub</th>
<th>Area (hectare)</th>
<th>Width (m)</th>
<th>Slope (%)</th>
<th>Impv* (%)</th>
<th>Land Use**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.8</td>
<td>310</td>
<td>35</td>
<td>0</td>
<td>UN</td>
<td>15</td>
<td>84</td>
<td>600</td>
<td>10</td>
<td>62</td>
<td>RLD</td>
</tr>
<tr>
<td>2</td>
<td>25.3</td>
<td>195</td>
<td>33</td>
<td>0</td>
<td>UN</td>
<td>16</td>
<td>95.5</td>
<td>660</td>
<td>10</td>
<td>37</td>
<td>UN</td>
</tr>
<tr>
<td>3</td>
<td>30.2</td>
<td>310</td>
<td>45</td>
<td>0</td>
<td>UN</td>
<td>17</td>
<td>58.8</td>
<td>345</td>
<td>5</td>
<td>72</td>
<td>RHD</td>
</tr>
<tr>
<td>4</td>
<td>16.2</td>
<td>140</td>
<td>45</td>
<td>0</td>
<td>UN</td>
<td>18</td>
<td>71.6</td>
<td>550</td>
<td>5</td>
<td>67</td>
<td>RLD</td>
</tr>
<tr>
<td>5</td>
<td>16.2</td>
<td>230</td>
<td>80</td>
<td>0</td>
<td>UN</td>
<td>19</td>
<td>111.6</td>
<td>640</td>
<td>10</td>
<td>37*</td>
<td>RLD</td>
</tr>
<tr>
<td>6</td>
<td>75.6</td>
<td>540</td>
<td>46</td>
<td>0</td>
<td>UN</td>
<td>20</td>
<td>80</td>
<td>630</td>
<td>2.5</td>
<td>82</td>
<td>RLD</td>
</tr>
<tr>
<td>7</td>
<td>30.4</td>
<td>310</td>
<td>45</td>
<td>0</td>
<td>UN</td>
<td>21</td>
<td>141.9</td>
<td>740</td>
<td>20</td>
<td>32</td>
<td>RLD</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>310</td>
<td>45</td>
<td>0</td>
<td>UN</td>
<td>22</td>
<td>174.5</td>
<td>840</td>
<td>3</td>
<td>82</td>
<td>RHD</td>
</tr>
<tr>
<td>9</td>
<td>64</td>
<td>570</td>
<td>37</td>
<td>0</td>
<td>UN</td>
<td>23</td>
<td>26.1</td>
<td>200</td>
<td>20</td>
<td>32</td>
<td>UN</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>420</td>
<td>31</td>
<td>7</td>
<td>UN</td>
<td>24</td>
<td>42.3</td>
<td>380</td>
<td>10</td>
<td>32</td>
<td>UN</td>
</tr>
<tr>
<td>11</td>
<td>84.8</td>
<td>570</td>
<td>30</td>
<td>0</td>
<td>UN</td>
<td>25</td>
<td>172.7</td>
<td>750</td>
<td>2</td>
<td>72</td>
<td>RHD</td>
</tr>
<tr>
<td>12</td>
<td>86.9</td>
<td>660</td>
<td>15</td>
<td>72</td>
<td>RLD</td>
<td>26</td>
<td>101.6</td>
<td>750</td>
<td>2</td>
<td>37</td>
<td>UN</td>
</tr>
<tr>
<td>13</td>
<td>68</td>
<td>480</td>
<td>15</td>
<td>67</td>
<td>RLD</td>
<td>27</td>
<td>104</td>
<td>612</td>
<td>3</td>
<td>67</td>
<td>RHD</td>
</tr>
<tr>
<td>14</td>
<td>98.6</td>
<td>700</td>
<td>10</td>
<td>77</td>
<td>RLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rainfall hyetograph (mean values)

Rainfall hyetograph (maximum values)
<table>
<thead>
<tr>
<th>Sub*</th>
<th>Total Runoff (mm)</th>
<th>Impv (%)**</th>
<th>Indicator***</th>
<th>Sub*</th>
<th>Total Runoff (mm)</th>
<th>Impv (%)**</th>
<th>Indicator***</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>22.17</td>
<td>72</td>
<td>1596</td>
<td>20</td>
<td>25.14</td>
<td>82</td>
<td>2061</td>
</tr>
<tr>
<td>13</td>
<td>20.59</td>
<td>67</td>
<td>1380</td>
<td>21</td>
<td>2.47</td>
<td>32</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>23.66</td>
<td>77</td>
<td>1822</td>
<td>22</td>
<td>25</td>
<td>82</td>
<td>2050</td>
</tr>
<tr>
<td>15</td>
<td>19.08</td>
<td>62</td>
<td>1183</td>
<td>23</td>
<td>1.98</td>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>11.39</td>
<td>37</td>
<td>421</td>
<td>24</td>
<td>1.97</td>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>17</td>
<td>22.02</td>
<td>72</td>
<td>1585</td>
<td>25</td>
<td>21.84</td>
<td>72</td>
<td>1572</td>
</tr>
<tr>
<td>18</td>
<td>20.56</td>
<td>67</td>
<td>1378</td>
<td>26</td>
<td>11.43</td>
<td>37</td>
<td>423</td>
</tr>
<tr>
<td>19</td>
<td>11.38</td>
<td>37</td>
<td>421</td>
<td>27</td>
<td>20.5</td>
<td>67</td>
<td>1374</td>
</tr>
</tbody>
</table>