DPDK in depth

2)DPDK

DATA PLANE DEVELOPMENT KIT

Rami Rosen

Kernel TLV
August 2018

About myself

* Rami Rosen, author of “Linux Kernel Networking”, Apress; Linux Kernel
Expert. Website: http://ramirose.wixsite.com/ramirosen

e Chinese translation

r L e e
>
H
.
o R

of the book Linux/yB

i
t
-
4

Linux Kernel

Networking

http://ramirose.wixsite.com/ramirosen

http://ramirose.wixsite.com/ramirosen

Agenda

DPDK background and short history

DPDK projects

DPDK libraries and PMDs

DPDK advantages and disadvantages

DPDK Development model

Anatomy of a simple DPDK application (/12fwd)
Testpmd: DPDK CLI tool

http://ramirose.wixsite.com/ramirosen

DPDK Background

DPDK (Data Plane Development Kit) is a User Space Open Source project, deals with 10 acceleration,
primarily for Data Centers.

— For Linux and BSD.
- Some work is done for Windows.
2010: started by Intel.

2013: ownership moved to 6WIND, who also started the dpdk.org site.
6WIND contributed many features to DPDK (like rte_flow). 6WIND were maintainers of MLX4/MLX5 till recently.

2017 (April): the project moved to the Linux Foundation.

Network acceleration has always been a subject which attracted the attention of network vendors and
software developers/architects/researchers.

Other projects in this arena:

— ODP - OpenDataPlane (Linaro): https://www.opendataplane.org/
- Focused primarily on ARM

— Snabb (Lua): https://github.com/snabbco/snabb

http://ramirose.wixsite.com/ramirosen

https://www.opendataplane.org/
https://github.com/snabbco/snabb

DPDK Background (contd)

* Based on using hugepages (2M or 1GB) for boosting performance
* This reduces significantly TLB flushes.

* Numa Awareness
— Every PCl device has a Numa Node associated with it.

* /sys/bus/pci/devices/0000:04:00.0/numa_node

* Performance reports for recent releases (ranging from 16.11 to 18.05) for
Mellanox and Intel NICs are available on: http://static.dpdk.org/doc/perf/

* These performance results are updated every new DPDK release.
* Tests with L3FWD app with IPv4. Full details about the setup.

http://ramirose.wixsite.com/ramirosen

http://static.dpdk.org/doc/perf/
http://static.dpdk.org/doc/perf/

DPDK Projects

DPDK is used in a variety of Open Source projects. Following is a very partial list:
VPP (FD.io project): https://wiki.fd.io/view/VPP
Contrail vRouter (Juniper Network)

— Open Source SDN controller.
Sample VNFs (OPNFV)

- Using librte_pipeline.

- VvFW (Virtual Firewalls)

— VCGNAPT (NAT)

— More (there are 5 VNFs in total as of now)
DPPD-PROX (monitoring DPDK stats)

http://ramirose.wixsite.com/ramirosen

https://wiki.fd.io/view/VPP

DPDK Projects (contd)

TRex — stateful traffic generator, based on DPDK (FD.io project)
https://wiki.fd.io/view/TRex

- Developed by Hanoch Haim from Cisco.

Collectd - System statistics collection daemon
DPDK stats and DPDK events plugins were added to collectd.

- https://collectd.org/

Integrated with OpenStack and OPNFV solutions.

SPDK=Storage Performance Development Kit
- https://github.com/spdk/spdk

More — plenty of results when searching in google.

http://ramirose.wixsite.com/ramirosen

https://wiki.fd.io/view/TRex
https://wiki.fd.io/view/TRex
https://collectd.org/
https://github.com/spdk/spdk

DPDK Projects (contd)

DTS

DPDK Test Suit
http://dpdk.org/git/tools/dts
Written in Python

An Open Source project

Consists of over 105 functional tests and benchmarking tests.
Works with IXIA (HW packet generator) and dpdk-pktgen (SW packet generator)

Work is being done for adding support for IXIA Networks and TRex
TRex is an Open Source DPDK packet generator hosted on FD.io

DTS currently supports Intel, Mellanox and Cavium nics.
- In settings.py you can find the Vendor ID/Device ID of the devices supported by DTS.
- http://git.dpdk.org/tools/dts/tree/framework/settings.py

Note: Apart from it, the DPDK project itself contains over 100 unit tests (written in “C”) as part of the
DPDK tree, under the “test” folder.

http://ramirose.wixsite.com/ramirosen

http://dpdk.org/git/tools/dts
http://dpdk.org/git/tools/dts
http://git.dpdk.org/tools/dts/tree/framework/settings.py

DPDK Libraries and PMDs

e What is DPDK ? DPDK is not a network stack.

* You can divide the DPDK project development into four categories:
e Libraries
— There are over 45 libraries

— Core Libraries:
librte _eal, librte_mbuf, more.

— librte_ethdev (formerly called librte_ether)
* Implements network devices and their callbacks.

— librte_hash
* Provides an API for creating hash tables for fast lookup

http://ramirose.wixsite.com/ramirosen 9

DPDK Libraries and PMDs - contd

PMDs (Poll Mode Drivers)

Ethernet network PMD drivers

There are over 20 PMD network drivers (under drivers/net (1Gb, 10Gb, 25 Gb, 40 Gb and 100Gb.)

Some of the drivers have “base” subfolder, for code which is shared with kernel module.

For example, ENA (Amazon), SFC (Solarflare Communications), Intel IXGBE, Intel I140E, Intel FM10K, and more).
Mellanox mix4/mIx5 PMDs use a bifurcated model.

This means that they work in conjunction with their kernel driver.

Most network Ethernet PMDs use uio mapping (by setting the RTE_PCI_DRV_NEED_MAPPING flag in the
drv_flags of the rte_pci_driver object)

- Exceptions: mix4, mix5, mvpp2, netsvc, szedata, dpaa/dpaa2, ifc
Virtual devices - vdevs (PF_PACKET, TAP, more)
Crypto devices
Eventdev devices
Raw Devices (NXP)

http://ramirose.wixsite.com/ramirosen 10

Network PMDs

Each network PMD typically defines an rte_pci_driver object and sets its

probe, remove and PCI ID table.

It calls RTE_PMD_REGISTER_PCI() to register it to the system

— This adds it to a global linked list, before DPDK app main() starts, using _attribute__ (constructor)

Creates an instance of the network object (rte_eth_dev) in its probe() callback and defines its RX callback
and TX callback.

With Linux kernel network drivers, it is enough to insmod the driver, and its RX callback will receive
traffic.

With DPDK PMDs, there is no such thing. Building the PMD creates a static library by default (you can
also change it to be an .so)

A DPDK application must be built and linked against that PMD library and call these RX and TX
callbacks to process the traffic.

http://ramirose.wixsite.com/ramirosen 11

* Apart from it, each network PMD defines a set of callbacks, for
handling various tasks, like setting MTU, setting MAC address,
enabling promiscuous mode, etc.

* This is done by defining an eth_dev_ops object and its callbacks.
— There are over 85 callbacks in the eth _dev_ops object.

- It is parallel to the net_device ops of the Linux kernel
networking stack.

http://ramirose.wixsite.com/ramirosen

12

DPDK - Advantages and Disadvantages

Advantages:

— very good performance in L2 layer.

— Upstreaming is easier comparing to the Linux kernel.
Disadvantages:

— no L3/L4 network stack.

Solutions:

VPP — a project originated from Cisco, started in 2002.
Became an Open Source project under FD.io (Linux Foundation)
Every DPDK PMD can be used (according to VPP mailing list)

TLDK — L4 sockets (UDP, TCP, more).
- Does not use the regular Berkeley SOCKET API

http://ramirose.wixsite.com/ramirosen

13

DPDK - Advantages and Disadvantages
(contd)

— A Linux kernel module, part of the DPDK repo
— Does not support 32 bit
- From config/defconfig_i686-native-linuxapp-gcc
KNI is not supported on 32-bit
CONFIG_RTE_LIBRTE_KNI=n
— Not efficient
— Not in kernel mainline. Also candidate for deprecation from DPDK.

- There were discussions over the dpdk-dev mailing list about an alternative solution called KCP, Kernel
Control Path; There were 10 iterations of KCP patchset about half a year ago (TBD: date), but the
status currently is that KCP is paused.

OvS-DPDK

http://ramirose.wixsite.com/ramirosen 14

DPDK applications and tools

Sample applications
There are over 50 sample applications under the “examples” folder.

These applications are documented in detail in the “DPDK Sample
Applications User Guides” (255 pages for DPDK 18.05).

Starting from a basic helloworld application, up to more complex
applications (like [2fwd, 13fwd, and more).

Tools/Utils
— The most helpful is testomd

Will be discussed later.

http://ramirose.wixsite.com/ramirosen

15

* You can use dpdk-procinfo to get stats/extended stats
* dpdk-procinfo runs as a secondary process.

- ./dpdk-procinfo -- -p 1 --stats
- ./dpdk-procinfo -- -p 1 --xstats

http://ramirose.wixsite.com/ramirosen

16

DPDK — development model

Each 3 months there is a new release of DPDK

The releases are announced over the dpdk-announce mailing list (announce@dpdk.org)
Usually, there are up to 5 or 7 Release Candidates (RCs) before each final release.

The naming scheme is adopted from Ubuntu: yy:mm since April 2016 (DPDK 16.04)

For example, in 2018 there are the following 4 releases (18.11 will be released in November):
18.02 — 1315 patches

18.05 - 1716 patches (Venky)

18.08 - 898 patches. 1,339,507 lines of code (only C files and headers).

18.11 (LTS release)

Apart from it, there are LTS (Long Term Stable) releases, one per year.

With support for 2 years.

There is a strict deprecation process
Deprecation notice should be sent over the mailing list a time ahead.

http://ramirose.wixsite.com/ramirosen 17

mailto:announce@dpdk.org

 New features are sometime marked as “rte_experimental”
and can be removed without prior notice.

http://ramirose.wixsite.com/ramirosen

18

DPDK - development model (contd)

Development is done by git patches over a public mailing list, dpdk-dev.
Governance:

TEChRicaNBOakdIof 8 members

The rule is that no more than 40% of the members can be of the same company
Need 2/3 to remove a member.

Meetings are open and held over IRC once in two weeks

Minutes are posted over the dpdk-dev mailing list

Discussions are about technical topics like adding a library, new features, and deciding if there is a
dispute about a patch set.

Minutes: https://core.dpdk.org/techboard/minutes/

— Budgets, legal, conferences.

http://ramirose.wixsite.com/ramirosen 19

https://core.dpdk.org/techboard/minutes/
https://core.dpdk.org/techboard/minutes/
https://core.dpdk.org/techboard/minutes/

L2FWD — a simple DPDK application

int main(int argc, char **argv)
{
ret = rte_eal_init(argc, argv); /*parse EAL arguments */

ret = |2fwd_parse_args(argc, argv); /* parse application-specific arguments */

/* Initialise each port */
RTE_ETH_FOREACH_DEV(portid) {

ret = rte_eth_dev_configure(portid, 1, 1, &local_port_conf);

ret = rte_eth _dev_start(portid);

http://ramirose.wixsite.com/ramirosen

20

L2FWD - a simple DPDK application (contd)

struct rte_mbuf *m;

[*..%/

while (!force_quit) {
[*..0*/
nb_rx = rte_eth _rx_burst((uint8_t) portid, O, pkts_burst, MAX_PKT_BURST);
port_statistics[portid].rx += nb_rx;
for (j=0;j<nb_rx; j++) {

m = pkts_burst[j];

[*.0%/
12fwd_simple forward(m, portid);

http://ramirose.wixsite.com/ramirosen 21

There are also several L3FWD samples under the “examples”
folder, which has somewhat similar logic.

In L3FWD, there is a static lookup table for IPv4 and IPVv6.
You can select either LPM (the default) or Exact Match.

The lookup is done according to the destination IP address in
the IP header.

http://ramirose.wixsite.com/ramirosen 22

You need perform a setup before running any DPDK app:
Setting number of hugepages.

For example:
echo256 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

* Binding the NIC to DPDK is done by using dpdk-devbind.py script

For example, dpdk-devbind.py -b uio_pci_generic 00:04.0
This will call the remove() callback of the kernel module associated with this PCI ID, if it is loaded.

The remove callback of the KMOD does not cause it to be unloaded.

When you done with running DPDK application, you can reload the kernel module associated with this PCI

ID; for example, if the KMOD is ixgbe, this can be done by:
dpdk-devbind.py -b ixgbe 00:04.0
This will call the probe() method of the IXGBE kernel driver

http://ramirose.wixsite.com/ramirosen

23

For binding, you can use either of the following three kernel modules:

uio_pci_generic (a generic kernel module)
vfio-pci (a generic kernel module)

— Sometimes vfio-pci is needed when UEFI secure boot is enabled.
— See: https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#vfio
— vfio-pci module doesn’t support the creation of virtual functions.
igb_uio
— A DPDK kernel module, not in mainline)
— The igb_uio kernel module adds an entry called max_vfs in PCI sysfs.
e Writing to this entry creates DPDK VFs.
o See dpdk/kernel/linux/igb_uio/igb_uio.c

http://ramirose.wixsite.com/ramirosen

24

https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#vfio

testpmd

Testomd is an application like any other DPDK application.

testomd provides a CLI which enables you various operations:
Gather information about a port.

Attach/Detach port in runtime.

Using the rte_eth_dev_attach()/rte_eth_dev_detach() API.

(Eventually invoking the rte_eal_hotplug_add()/ rte_eal_hotplug_remove())

When detaching a port, we also call rte_eth_dev_release_port() to set the state of the device to be RTE_ETH_DEV_UNUSED.

Send packets.

Sniff, dump and parse the contents of packets.
This is enabled when starting testpmd with --forward-mode=rxonly

load DDP profile
DDP is Dynamic Device Personalization
Device programmability

- https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-et
hernet-700-series

http://ramirose.wixsite.com/ramirosen 25

https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series

testpmd - contd

load BPF

developed by Konstantin Ananyev
- bpf-load command from testpmd CLI.
- Uses librte_bpf API

http://ramirose.wixsite.com/ramirosen

26

DPDK application - contd

All DPDK applications usually have two sets of parameters,
separated by “--”

The first set is the EAL (Environment Abstraction Layer) parameters, and
are passed to the rte_eal init() method.

— For example, --log-level=8.

— Another example: the legacy mode is enabled by specifying --legacy-
mem in the EAL command line parameter

The second set is the application-specific parameters.

There are two modes in which DPDK memory subsystem can operate:
dynamic mode, and legacy mode.

http://ramirose.wixsite.com/ramirosen

27

The two most important data structures for understanding DPDK networking are
rth_ethdev and rte_mbuf.

rte_ethdev represents a network device, and is somewhat parallel to the Linux kernel
net_device object.

Every rte_ethdev should be associated with a bus (rte_bus object)
rte_bus was Introduced in DPDK 17.02

For many PMDs it is the PCI bus.

Creating rte_eth_dev is done by:

- rte_eth_dev_allocate(const char *name)

rte_mbuf represents a network buffer and is somewhat parallel to the Linux kernel sk_buff
object.

Allocation of rte_mbuf is done by rte_pktmbuf _alloc(struct rte_mempool *mp)

rte_mbuf object can be chained (multi segmented)

This is implemented by the next pointer of rte_mbuf and nb_segs

http://ramirose.wixsite.com/ramirosen

28

DPDK Roadmap https:/icore.dpdk.org/roadmapl/

* Next release, 18.11, is an LTS, so effort will be one for stabilizing and bug fixing.

new device specification (devargs) syntax
power management: traffic pattern aware power control
add MPLS to rte_flow encapsulation API

add metadata matching in rte_flow API

mix5: add BlueField representors

mIx5: support VXLAN and MPLS encapsulations
failure handler for PCIE hardware hotplug

virtual device hotplug

tap and failsafe support in multi-process
SoftNIC support for NAT

eventdev ordered and atomic queues for DPAA2
libedit integration

noisy VNF forward mode in testpmd

http://ramirose.wixsite.com/ramirosen

29

XDP and DPDK

XDP and DPDK

David Miller netdev conference — talks against DPDK in context of XDP.
— Qi Zhang patchset.
* http://mails.dpdk.org/archives/dev/2018-August/109791.html
V3 of the patchset was posted to dpdk-dev in August 2018
 Seems a promising and a very interesting new DPDK direction.

— Based on AF_XDP, a patchset by Bjorn Topel, which was merged in Kernel 4.18.
* https://lwn.net/Articles/750845/

http://ramirose.wixsite.com/ramirosen

30

http://mails.dpdk.org/archives/dev/2018-August/109791.html
https://lwn.net/Articles/750845/

* Device querying patchset
. added a struct called rte class

e lib/librte_eal/common/include/rte_class.h

http://ramirose.wixsite.com/ramirosen

31

Links

DPDK website: https://www.dpdk.org/
DPDK API: http://doc.dpdk.org/api/
DPDK Summit: https://dpdksummit.com/

"Network acceleration with DPDK"
— https://llwn.net/Articles/725254/

"Userspace Networking with DPDK"

- https://lwww.linuxjournal.com/content/userspace-networking-dpdk

http://ramirose.wixsite.com/ramirosen

32

https://www.dpdk.org/
http://doc.dpdk.org/api/
https://dpdksummit.com/

testpmd- Device querying

Device querying (will be included in 18.08, only 12 out of 25 patches in a
patchset posted by Gaetan Rivet of 6WIND were applied till now)

show device bus=pci

tespmd> show device bus=pci
0x0x2d1b920: 0000:05:00.0:net_i40e

tespmd> show device bus=vdev
0x0x2d074f0: eth_af packetO:net_af packet

testpmd> show device bus=vdev,driver=net_af packet/class=eth
0x0x2d074f0: eth_af _packetO:net_af packet

http://ramirose.wixsite.com/ramirosen

33

e [System requirements:

— Note: DPDK cannot run on any kernel. There are
minimum kernel, specified in the “System
Requirements” section of the “Getting Started Guide for
Linux” doc:,
http://doc.dpdk.org/guides/linux_gsg/sys_reqs.html

— As of now, Kernel version should be >= 3.2

http://ramirose.wixsite.com/ramirosen 34

http://doc.dpdk.org/guides/linux_gsg/sys_reqs.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

