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中文摘要  

 

 隨著機器人與相關研究的發展由工廠漸漸走向辦公室及家庭環境，機器人在

人類生活環境中服務與互動顯得十分重要，機器人應該要能做為人類生活中的幫

手並提供各式服務，而在各項服務中，搜尋並遞送物品對使用者來說是很實用的一

項技能。為了達成此功能，前人的研究多假設物品放在開放空間中，機器人在室內

環境中以影像搜尋目標物並抓取之，過程中機器人規劃出最佳的路徑移動並且徹

底觀察環境中的每個角落。然而，在真實世界中，物品很可能被其他物品所阻擋以

致單純的影像搜尋不可能找到物品，因此，近期的文獻提及了以機器手臂移除障礙

物以達成目標物搜尋之規劃，這些研究成果規劃機器人移動障礙物的順序並探索

後方空間。 

 在本篇論文中，我們結合了以機器手臂移除障礙物與視覺主動搜尋之規劃，提

出了一整合兩種方式之物品搜尋系統，機器人可以變換位置觀察環境，亦可以使用

手臂移動障礙物來進行搜尋。本篇論文提出之規劃概念是以最小化預期搜尋時間

以及在發現目標物後最小化目標物抓取時間為目標，使用 A*演算法並在搜尋空間

內進行取樣以達成在有限時間內完成規劃。此外，本論文加入了視覺回授以確保機

器人準確地執行計畫。最後，我們透過在書架內物品阻擋的環境中搜尋目標物的實

驗來驗證本論文提出方法之優越性。 

 

關鍵字：機器手臂操作, 搜尋物體規劃, 辦公室機器人 
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ABSTRACT 

 

 As robots and robotic researches marching from factory to office and home, the 

ability of robot to interact with complex human-living environment becomes pivotal. To 

show its value, the robot should be able to do various tasks as an assistant in human-living 

environment. Searching and delivering object in indoor environment is one of the tasks 

practical to user. Previous study mainly focused on visual search of objects in indoor 

environment. The search is performed by a mobile robot which plans a best route to 

observe the environment and discover the target object. However, in real world, objects 

may be occluded by other objects or structures, which means pure visual search is 

impossible to find these targets. As a result, some recent works discussed the object search 

method by removing objects that block and hide the target object. 

In this thesis, we propose an object search planning system that combines visual and 

arm manipulation search. The robot can either reposition one of the accessible object with 

its arm or move its platform to view the environment from a different position to discover 

the target object. The concept of planning is A* Planning which minimizes the expected 

time to discover the target and then the time to grasp the target in clutter after its discovery. 

Visual sensor feedback is included to assure the accuracy of each action performed by the 

robot. We evaluate the proposed approach with experiment in the scenario of object search 

in a shelf environment where objects may occlude or block access to one another. 

 

Keywords: robot arm manipulation, object search planning, office robot 
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Introduction 

1.1 Motivation 

 Researches on service robots boomed in this century, and the research society 

continues growing. Although most of service robots are not commercialized yet, 

researchers in labs from all over the world have made robot do various tasks. One of them 

is the object grasp and delivery with gripper. However, we demand more than that. In 

most of the robot demonstration, target object is assumed to be placed in an open space 

where the robot is able to see and grasp the target directly. Many researches have been 

done to analyze how the robot grasps objects in such scenario. In reality, however, objects 

are usually placed in clutter, which means the robot may not be able to grasp the target 

directly. Furthermore, in many cases, objects are placed in a fridge or cupboard and 

occluded by other objects, as shown in Figure 1.1. In both cases, the robot needs to plan 

the actions in order to find and grasp the target. In this thesis, we aim to solve the robotic 

object search planning problem by allowing the robot to manipulate objects and change 

camera viewpoint in order to gain more information about the space and to discover the 

target. 

 1 



  
(a) Front view of the objects (b) The target object is occluded 

Figure 1.1 Typical scene in object search by manipulation 

1.2 Problem Formulation 

We formulate the problem as the robotic object search and grasp planning in limited 

workspace like fridge or cupboard. In such cases, pure visual search is not enough to find 

the target, and the robot should also manipulate objects in the scene to reveal the target 

and clear a path to grasp it. In the first place, the target object is hidden behind several 

objects in the workspace. The robot percept the scene and register each object in view 

with 3D sensors, such as RGB-D camera, stereo camera or LiDAR. A series of actions 

are generated according to the perception result to discover and then grasp the target 

object. To achieve this, the robot can either move objects to new positions or change the 

robot pose to better approach certain object or view the workspace in each action in series. 

 
Figure 1.2 General process of searching and grasping the target 
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When making a decision on which action to perform, the robot should consider both 

the “information gain” and the “accessibility effect” caused by the action. “Information 

gain” means how possible the target object will be revealed after this action. Intuitively, 

the robot tends to take actions with maximum information gain to quickly find the target. 

Nevertheless, this greedy strategy will not always work. The objects are placed in clutter, 

so the robot may not be able to access every object, including the one with maximum 

information gain, in the workspace. Furthermore, the robot should also consider where to 

place the object to benefit later actions. In other words, during the planning, the robot 

should also considers if the action makes other objects accessible or inaccessible. This 

effect of the action is summarized as “accessibility effect.” The robot should be able to 

balance both considerations and plan a solution to find the target as soon as possible. 

To better analyze such complex object search problem, several prior conditions need 

to be assumed in order to make the problem tractable. First, we assume there is only one 

hidden object in the workspace, which is the target and the geometry and object cloud of 

the target are known a priori. This assumption allows us to plan the search process based 

on object knowledge that can be visually acquired online, which are geometry and pose 

of every object except for the target in the workspace. Though it is possible to have more 

than one objects that are hidden, we may re-plan after spotting hidden objects other than 

the target. Thus, without loss of generality, we still assume the target is the only hidden 

object in order to make our solution clearer. Second, we let the robot arm always approach 

objects in horizontal direction. Third, all objects are standing on a horizontal plane and 

convex in outer contour of each slice parallel to the XY plane. Finally, the object’s center 

of mass is assumed to be the geometric center of the object. These four conditions are set 

mainly for our explanation about how to select the grasp points throughout the planning 

so as to reduce the problem complexity. 
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1.3 Challenges 

In this thesis, the workspace is assumed limited, which implies that the objects are 

impossible to be removed from the scene. Instead, they are moved to new poses inside 

the workspace and may affect subsequent actions and plan. The planning thus becomes a 

“reconfiguration planning” problem with great complexity. Furthermore, since an action 

influences following actions, a sensor feedback system is required for the robot to make 

sure that each action is performed accurately. 

1.4 Related Works 

 In the field of object search by a mobile robot, the former researches focused on 

active visual search of objects. Such category of researches [1-5] assumes that the target 

object is placed in open place in the map where the robot can see directly. The planning 

determines where the robot should go to gain more information about the environment to 

find the target more quickly. Among those works, [2-4] further utilized the semantic 

meaning of objects and the spatial relations among objects to search the target object more 

quickly. 

 In recent years, numbers of results on “Search by Manipulation” have emerged. In 

real life, the objects are often placed in fridge or cupboard. The objects are occluded and 

blocked by other objects, which forces the robot to search the target by arranging the 

objects with the manipulator. It is worthwhile to mention that the works, [6] and [7], are 

pioneers in this field of study, but they addressed this problem in a quite different way. 

For example, [6] formulated the problem as a search of an object in multiple containers. 

They analyzed the probability of each container containing the target object with space 

constraint in each container and object co-occurrence relation. The robot then searches 

the container with high probability in containing the target by manipulation. 
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 Furthermore, [7] and its final form [8] addressed this problem as an optimization in 

expected time to search the target in single container. Among all related works, this work 

correlates with our work most. In fact, despite that our problem setting shares some 

similarity to theirs, such as the target being the only hidden object and the expected search 

time being optimized, our problem scope becomes more general in the sense that several 

of their conditions are relaxed here. Specifically, our robot grasps the object in multiple 

direction, and observes the container more freely at number of poses. When facing large 

objects which is ungraspable, the robot may push it aside to discover the target object. 

Moreover, the robot is not allowed to permanently remove the objects from the scene, 

which turns out to be more challenging. 

In former works [7, 8], under fixed camera pose assumptions, the occluded volumes 

may be divided into separated parts, and the search by manipulation planning can be done 

independently in these separated occluded volumes. By doing this, the robot can search 

the occluded target rather efficiently. In our scenario, the robot is allowed to observe the 

objects at different poses, which makes the robot more easily find the target, but there are 

inevitably many intersections of the occluded volumes observed from different camera 

positions. Therefore, the algorithm proposed by [7] fails to be applicable to our scenario. 

Besides, [9] also discussed this problem by dividing the workspace into large grids 

and each object can only be contained in one grid. They also assumed a fixed camera 

position in planning. However, different from [7], they rearrange objects to a new grid 

position inside the container to explore the grids behind the grid which the object 

originally situated in. They model the object visibility and accessibility with single grid 

world, which is unrealistic. In their framework, the objects can be manipulated with push 

action to handle objects with large size. 
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1.5 Objectives 

In this thesis, we propose a planner based on A* planning to optimize the expected 

time to search the target object, which is occluded by several visible objects, in a limited 

workspace like cupboard, shelf and fridge. We combine the active visual search and 

manipulation search in single framework. The robot can either move to different poses to 

observe the workspace or manipulate one of the objects. After the object’s discovery, 

another planner to optimize the time required to grasp target is performed. In execution, 

the robot fixes its motion with sensor feedback to ensure the plan is accurately executed. 

1.6 Thesis Organization 

This thesis is organized as follows: In Chapter 2, we give an overview of our system 

architecture and hardware, and briefly introduce the tools and algorithms used in this 

thesis. In Chapter 3, the process to model workspace and object is discussed. The 

workspace and object models are input of the planner. In Chapter 4, the main contribution 

of this thesis, the search and grasp planner, is introduced in detail. After the planner, the 

sensor feedback in execution is also included in Chapter 4. Chapter 5 shows the 

experiment setting and result to evaluate the performance of the proposed approach to 

search and grasp target object. Finally, we conclude this thesis in Chapter 6. 
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Preliminaries 

2.1 System Overview 

2.1.1 Hardware System 

 The hardware system is a mobile robot called ARIO, as shown in Figure 2.1. The 

robot is equipped with a differential drive and a 5-DOF gripper. Since each motor on 

ARIO has been paired with an industrial quality motor drive responsible for handling 

precise dynamic control, in our research we only need to implement high level position 

control to control various robot tasks. The sensors used in this thesis include an Xtion Pro 

RGB-D camera mounted on the head of the robot and a DS-325 near range RGB-D 

camera installed on the wrist of the robot arm. Xtion Pro on the head is used as the main 

sensor to percept the whole workspace, while DS-325 is served as a sensor feedback tool 

to increase accuracy of the grasp actions. 

 
Figure 2.1 ARIO 
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2.1.2 Software System 

 The software system is composed of 4 parts, as shown in Figure 2.2. At first, 

perception module models the workspace and objects based on raw RGB-D data. The 3D 

perception in this thesis is implemented with Point Cloud Library (PCL)[10]. The search 

planning module then plans a series of search actions with the model derived from 

perception module. Execution module carries out the plan and fixes every action with 

sensor feedback to minimize execution error. After the target is spotted, the robot plans 

to grasp the target in clutter and executes the action with the execution module again. 

 

Figure 2.2 Flowchart of the software system 

2.2 A* Algorithm 

A* Algorithm [11] is a best-first search algorithm to plan a least-cost path from start 

node through multiple nodes connected by edges to a goal node. It is an improvement 
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from breadth-first search algorithm to always check the most promising child node first 

to reduce the search space. A* algorithm keeps track of every node’s cost from start node, 

which is the “past cost” of the node. Furthermore, A* algorithm estimates each node’s 

cost to the goal node, also known as “future cost”, and always finds the child nodes with 

the minimum past and future cost sum. If the future cost meets admissible heuristics, the 

A* algorithm can always find an optimal path from the start node to the goal node. A* 

algorithm has several advantages in planning. One of them is that A* algorithm can be 

implemented only with the connection relation between nodes and the heuristics for future 

cost estimation for each node. The algorithm does not have to know the neighborhood of 

goal node in the beginning of the search, which is very convenient in the cases where the 

position of the goal node in the graph is unknown or there are multiple goal nodes. 

Another advantage of A* algorithm lies in the memory usage and computational 

complexity. Since A* algorithm always expands the child nodes with the minimum past 

and future cost sum, it visits fewer nodes than breadth-first search and does not have to 

keep the full graph with all nodes. Instead, the robot only memorize nodes being traversed 

and their child nodes. Such characteristics is especially advantageous when the growing 

graph costs much. 

2.3 Random Sample Consensus (RANSAC) 

Random Sample Consensus [12] is a method to estimate parameters of a model from 

a set of data which contain outliers. The method first randomly samples some data from 

the whole dataset and then fit them with the model, find parameters of the model, and 

then check the number of data that can be described by the model. If the number is high, 

it is a good fit and hence the model parameters are recorded. The model can be refined by 

taking more iteration of sampling. This method has advantages in finding the model 
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parameters when there are significant amount of outliers. 

2.4 Object Feature Detector & Descriptor 

 In execution, the robot may move to several locations and view the workspace at 

different poses. To register the same object seen at different viewpoints, we match features 

extracted from the objects. To find feature correspondence in point cloud data, the most 

intuitive method is feature detector and descriptor based on the local 3D geometry of the 

object. However, in real world, many objects have similar shape, as shown in Figure 2.3. 

Therefore, we also include the color or gray scale intensity cue to find feature 

correspondence. After careful evaluation, the 5D Harris Corner feature detector is 

adopted in this thesis. After feature extraction, each feature point is described in 

ColorSHOT descriptor for matching. Though feature detectors and descriptors 

considering both geometry and color are more computationally expensive, they are more 

robust under uniformity in either color or geometry. 

   
(a) (b) (c) 

Figure 2.3 Examples of objects similar in shape 

2.4.1 5D Harris Corner Detector 

5D Harris corner feature detector is an combination of 2D Harris which is proposed 

by Harris and Stephens [13] to detect corners in grayscale image and 3D Harris that 

detects geometric corner in 3D surface [14]. Since it merges 2 Harris corner detector, the 

input data of 5D Harris must be dense structured point cloud, whose every point p  

corresponds to a pixel ( ),u v  in the image plane. The result of 5D Harris considers the 
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corner both in geometry and grayscale intensity. 

2D Harris feature detector detects pixels in the grayscale image that have large 

variation in intensity in both directions. By checking the difference between the target 

pixel and its neighboring pixels, we know how large the intensity variation is in the target 

pixel’s neighborhood. The 2D Harris corner is computed by finding the eigenvalues of 

the sum of intensity gradient covariance matrix, S , over a neighborhood window W . 

 
( ) ( )

2

2
, ,

x x y T
g g

u v W u v Wx y y

I I I
S I I

I I I∈ ∈

 
= = 

  
∑ ∑   (2.1) 

 
T

g x yI I I =     (2.2) 

where ( ),u v  is a pixel inside the window, and 
T

x yI I    is the intensity gradient at 

each image coordinate ( ),u v  along x  and y  directions, respectively. 

In 3D Harris, the grayscale intensity is replaced by surface normal at the point on 

the surface. The neighborhood ( )NB  of a point is defined as a sphere centered at the 

point with user-defined radius. The 3D Harris covariance matrix is calculated as: 

 T
p p

p NB
S N N

∈

= ∑   (2.3) 

 
T

p x y zN N N N =     (2.4) 

where pN  is the normal vector at point p . In 5D Harris, we concatenate pN  and gI  

to form the vector containing derivatives in both XYZ space and grayscale image plane, 

namely, 

 
TT T

p p gD N I =     (2.5) 

 The sum of covariance matrix over the neighborhood is defined as: 

 T
p p

p NB
S D D

∈

= ∑    (2.6) 
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with the covariance matrix sum, each point can be scored with the Harris response 

function: 

 ( ) ( ) ( )2detH p S trace S= −   (2.7) 

2.4.2 ColorSHOT Descriptor 

Generally speaking, we need a descriptor to show if an extracted feature point is 

similar to other feature points, and ColorSHOT [15, 16] is one. ColorSHOT is an 

improvement of the original SHOT (Signature of Histograms of OrienTations) descriptor, 

which only focuses on shape feature. ColorSHOT considers both shape and texture (color) 

of the neighborhood of the feature point. In ColorSHOT descriptor, all neighboring points 

are mapped to a reference frame based on the Eigenvalue Decomposition of the scatter 

matrix of the points which are neighbors of the feature point. Note that these points are 

divided by grids in spherical coordinates. 

The descriptor describes the local shape feature by defining a histogram in each grid 

with bins representing different values of inner product between the normal vector of the 

point and the feature point vector. For color part of the descriptor, the histogram is 

composed with of bins of the distances of points to the feature point in RGB space 

expressed as: 

 ( ) ( ) ( )
3

1
,C f p f p

i
l C C C i C i

=

= −∑   (2.8) 

where fC  and pC  are three dimensional RGB color vectors at the feature point and an 

arbitrary point, respectively. The distance is actually a 1-norm in RGB space. The color 

space can be replaced with CIELab or HSV. Finally, the descriptor vector is constructed 

by concatenating the shape and color descriptor vectors, as shown in Figure 2.4. 
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Figure 2.4 ColorSHOT Feature Descriptor[16] 
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Workspace Model and Object 

Models 

Before planning, the robot should identify the workspace boundary and segment the 

scene to find object models in the workspace, as shown in Figure 3.1. An object database 

is also generated online to keep the object’s geometry model, pose, and available action 

to be applied to the object. The workspace and object model provide fundamental 

information for later planning and runtime feedback in execution. 

 
Figure 3.1 Workspace Model and Object Models 

3.1 Workspace Model 

 The workspace is where the robot interacts with objects and discovers the target. 

Since the scenario in this thesis is searching target in limited workspace like cupboard, 

shelf and fridge. We model the workspace as a cuboid divided into voxel grids, as shown 

in Figure 3.2. The size of the voxel is adjustable to tradeoff between the precision and the 
 14 



computational cost. In this thesis, the voxel’s dimensions are 1cm x 1cm x 1cm, and it is 

the unit of the workspace. Each voxel in the workspace is either unknown, empty or 

occupied by an object. 

      
Figure 3.2 Workspace and its dimension 

To identify the dimensions of the workspace, there are a few approaches, and one of 

them is to record the information in the global semantic map so that the robot knows the 

exact location and dimension of the workspace. In this thesis, however, we assume that 

initially the robot only knows the rough location of the workspace in the map and the 

workspace lies within the robot view, so that local perception is required to have more 

accurate dimension and location of the workspace for the sake of planning. We achieve 

this by first identifying the upper, lower, left and right boundaries of the workspace with 

depth gradient feature. Then, referring to Figure 3.2, we first move the robot to the front 

of the workspace, being aligned with the midline of the workspace, and face the 

workspace directly. This pose is the starting pose of the robot in our planner. Within the 

side boundaries, we take the shallowest and deepest points as the shallower and deeper 

boundaries of the workspace. As a result, the whole workspace can be regarded as a 

cuboid whose three sides are aligned with the three axes in the global coordinate frame. 

In the sequel, we denote the left and right bounds as ( ),max ,min,w wy y , the upper and lower 
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bounds as ( ),max ,min,w wz z , and deeper and shallower bounds as ( ),max ,min,w wx x . 

3.2 Object Geometry Model 

After removing all the boundary points of the workspace, the rest point cloud are 

objects inside the workspace. We segment each object with Euclidean clustering approach 

to obtain each object point cloud { }1 2, ,..., nP p p p= , where 3
1 2, ,..., np p p R∈  are 

points of the point cloud. Since the object is assumed to be convex, we calculate the 

convex hull of the point cloud P  and compose the object’s geometry model with voxels 

whose center is inside the hull. The geometry model is thus a voxel cloud V . The 

occluded part of the object may not be modeled correctly. However, during planning, the 

robot moves to different positions and view the object from different perspectives. At that 

time, the robot is able to update the object model and re-plan if necessary. 

3.2.1 Geometric Primitive Model-based Object Modeling 

For objects which can be fitted well with a primitive geometry model, we can apply 

Random Sample Consensus (RANSAC) on the point cloud to get a precise object 

geometry model with model-based approach. Though we don’t know which model suits 

the object beforehand, we can still fit the object with predefined model and check its 

similarity to the model. Only fittings with high similarity are applied. 

One geometry model is the cylinder model. Here, we focus on cylinder vertical to 

the horizontal plane. Since cylindrical objects like bottles, cans, and cups are common in 

daily life, it is the top choice of geometry model. The cylinder model is expressed as: 

 ( ){ }3 ,C CCylinder P R d P L r ε= ∈ − <   (3.1) 

where CP  are points that fit the cylinder model, 3L R∈  is the central axis of the 

cylinder, r  is the radius, and ε  is the error tolerance of the model. To test if the model 
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well describes the object’s geometry, we find the root-mean-square error of radius r  to 

the distance of every point in the object point cloud P  to the central axis L : 

 
( )( )2

1
,

n

i
rms

d P L r
E

n
=

−
=
∑

  (3.2) 

if rmsE  is lower than certain threshold, which is determined by the magnitude of the 

sensor’s random error, the object is modeled as cylinder. Voxels that are inside the 

cylinder form the object model voxel cloud V . Modeling a cylindrical object as cylinder 

has more advantages than getting a precise model, and one of them is that the object has 

only one pose, which reduces the computational cost in deriving its manipulation model. 

 Besides cylinder model, we also fit object clouds with cuboid model. We first extract 

the plane which is parallel to z  axis and contains the most points from the object cloud, 

called major side plane. Second, we iteratively extract planes from the object cloud. 

Finally, we calculate the proportion of the points that belong to the planes vertical or 

parallel to the major side plane to score the similarity of the object cloud to a cuboid. The 

cuboid model is the object cloud bounding cuboid in the orientation determined by the 

normal vector of the major side plane. 

According to the object’s size, we divide the objects into 2 categories: small and 

large. If the robot gripper can completely surround the object, the object is small; 

otherwise, it is considered large. By checking the radius of the minimum bounding circle 

of the object’s projection to the XY plane, we can classify the objects as small or large 

ones. The reasons to classify objects by its size lie in the difference in manipulation 

models of the two kinds, which will be discussed it in section 3.5. 

3.3 Object Pose Model 

In this section, we give a brief introduction about how an object’s pose is described 
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in this thesis. As stated in Chapter 1, we assume that all objects are standing on a 

horizontal plane. Therefore, the object’s pose is special Euclidean group ( )2SE , which 

contains the object’s position ( ),o ox y  on the table, and the orientation oθ  rotating 

against the z axis. Since the workspace is discretized to be voxel grids, the position 

( ),o ox y  is mapped to the voxel in the bottom layer of the workspace. For object without 

geometric primitive model, ( ),o ox y  are the x  and y  component of the Euclidean 

mean of the voxels in the geometry model. For cylindrical objects, ( ),o ox y  are the x  

and y  component of the centroid of the cylinder model. 

Since there is little difference for planning and manipulation in slight orientation 

change, the object orientation unit is set to be 5 degrees in this thesis. The initial 

orientation of the object first observed by the robot is set as 0. For cylindrical objects, 

there is no or little difference in different orientations, so we let the orientation be always 

0. 

3.4 Object Manipulation Model 

In this section, we discuss how objects are manipulated by the robot and how objects 

are influenced by the manipulation. The object manipulation model models the effect of 

manipulation based on the manipulation type and the object pose relative to the gripper 

with absence of obstacles. There are three types of manipulation defined in this thesis, 

which are “grasp,” “place” and “push-aside.” 

3.4.1 Grasp Manipulation 

First manipulation is “grasp”. We limit the grasp direction to horizontal direction, as 

shown in Figure 3.3, so we can define a grasp as: 

 { },init gGRASP pθ=   (3.3) 
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where ( )0 360init initθ θ≤ <   means the initial object orientation relative to the gripper, 

which can also be regarded as the arm’s approach direction to the object, and 

( ) 3, ,g g g gp x y z R= ∈  is the grasp point expressed in object coordinate. For non-

cylindrical objects, the object’s orientation may vary after manipulation. This effect will 

be discussed in detail in section 3.5.1. We assume the grasp point does not change and it 

serves as rotation center when grasping. The final object orientation is determined by 

GRASP  and is denoted as ( )fin GRASPθ . If the object’s width in final pose finθ  is 

below the minimum or above the maximum spread of the gripper, the object cannot be 

grasped from initθ . As a result, we can filter all GRASP  with the above criterion and 

get a set of feasible GRASP , denoted as fGRASP . We define object grasp model ( GM ) 

to describe the effect of each feasible GRASP  to the object: 

 ( ) { }f finGM GRASP θ=   (3.4) 

 
Figure 3.3 Grasp manipulation 

3.4.2 Place Manipulation 

The object grasped will be released and placed somewhere in the workspace. A place 

manipulation is defined as: 

 { }, gPLACE pθ=   (3.5) 

where θ  is the relative pose of the object to the gripper, which equals the final relative 

pose finθ  in GM , and pp  is the place position with respect to the object centroid, 

 19 



which is the same as the grasp position gp . The object place model ( PM ) is therefore 

the object pose relative to the gripper: 

 ( ) ( ){ }, ,fin finPM PLACE x y θ=   (3.6) 

3.4.3 Push-aside Manipulation 

For a large object, it may be placed at a position where it is not prehensile from all 

available directions. Therefore, we design push-aside manipulations for the robot to move 

large objects by pushing it aside, as shown in Figure 3.4. A push-aside manipulation can 

be modeled as a three degrees-of-freedom (DOF) movement of a pushing plane. In ARIO 

robot, the arm pushing trajectory is fixed to an arc, so the DOF is reduced to 1. Therefore, 

in this thesis, we define a push-aside manipulation as: 

 ( ){ }_ , , ,init init initPUSH ASIDE x y DIRθ=   (3.7) 

where ( ), ,init init initx y θ  is the initial pose of the object relative to the gripper, and DIR  

is the push direction, either clockwise or counterclockwise. Unlike grasp manipulation, 

push-aside manipulation can be applied to an object in every orientation, so all push-aside 

manipulations are feasible. The object push-aside model ( PaM ) is: 

 ( ) ( ){ }_ , ,fin fin finPaM PUSH ASIDE x y θ=   (3.8) 

where ( ), ,fin fin finx y θ  is the final pose of the object in the gripper coordinate. The pose 

change effect of the push manipulation is detailed in section 3.5.2. 

From the manipulation model, we get a mapping from initial pose to final pose in 

gripper coordinate. Thus, the object movement in the global coordinate frame can be 

determined if we know the gripper motion in that coordinate. 
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Figure 3.4 Push-aside manipulation 

3.5 Object Pose Prediction after Manipulation 

For non-cylindrical objects, object pose may change after manipulation. To plan 

actions to search for the target object, the robot should know how objects’ pose changes 

in each manipulation beforehand. In the following section, we discussed how we predict 

the pose variation effect caused by “grasp” and “push-aside”, respectively. 

3.5.1 Grasp Manipulation 

The pose variation in grasp manipulation is a gripper dependent. The shape and the 

closing motion of the gripper is crucial in predicting the final pose after manipulation. 

Figure 3.5(a) shows the gripper of ARIO. The gripper area, marked as the green 

rectangular area in Figure 3.5(a), is the area to contain the object in the gripper. Inside the 

gripper, we define gripper coordinate frame centered at the center of the gripper area, as 

shown in Figure 3.5(a). We assume that the object pure rotates against the gripper center 

during grasping. When grasping small objects, the gripper moves to align its center to the 

object center at the grasp height, as shown in Figure 3.5(b). Whereas in grasping large 

objects, the gripper may not be possible to align its center to the object center at the grasp 

height, so the gripper will try it best to fit the object into it, as shown in Figure 3.5(c). If 

a large object cannot fit into the gripper to occupy more than half of the gripper area in 

certain relative pose to the gripper, the approach direction is considered invalid. 

In order to predict the object rotation, we first find the contact point first touched by 
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the gripper in current relative object pose to the gripper. If the contact point is in first or 

third quadrant of the gripper coordinate, the object rotates clockwise, as shown in Figure 

3.5(c). If the contact point is in second or fourth quadrant of the gripper coordinate, the 

object rotates counterclockwise, as shown in Figure 3.5(b). If there are multiple contact 

points in neighboring quadrants, the object reaches its final pose. In conclusion, by 

following the above procedures, we can derive the final relative object pose given an 

initial relative object pose to the gripper and a grasp height. 

   
(a) (b) (c) 

Figure 3.5 Grasp model 

3.5.2 Push-aside Manipulation 

Similar to grasp manipulation, the pose variation relative to the gripper in a push-

aside manipulation is assumed to be a pure rotation against the object center of mass, 

which is also the object geometric center as we assumed. In push-aside manipulation, we 

also divides the object into 4 quadrant, as shown in Figure 3.6. The x  axis of push-aside 

coordinate frame is parallel to the arm, and y  axis is vertical to it. If the contact point is 

in first or third quadrant, the object rotates clockwise. If the contact is at second or forth 

quadrant, the object rotates counterclockwise. If there are multiple contact points in two 

quadrants of the same side, the object reaches final relative pose to the arm. To ensure the 

object converges to final relative pose after pushing, we let the robot push each object for 

at least 10 degrees. 

In order to prevent the object sliding toward x+  direction in the push-aside 
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coordinate frame and escaping from the push-aside manipulation, we equip the gripper 

with a pair of blocking plate to confine the object, as shown in Figure 3.6. As a result, the 

global motion of the object in push-aside manipulation is thus considered as a 

combination of pure translation along the arm’s circular trajectory and a pure rotation 

against the object center. 

 
Figure 3.6 Push-aside model 

Blocking Plate 
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Planning and Sensor Feedback in 

Execution 

4.1 Robot Pose Sampling 

In the planner, the robot can change its pose to gain better view of the workspace 

and manipulate objects from different directions. To reduce the computational cost of the 

planner, we identify a few positions ( ),
i ir rx y  in front of the workspace as the robot pose 

candidates, referring to Figure 4.1, which are expressed as follows: 

 
,min

,min ,max

, 1,...,1
1 1

i

i

r w wr

rr
r w w

r r

x x d
i NN iiy y y

N N

= −

=+ −
= +

+ +

  (4.1) 

where rN  is the total number of robot pose candidates, and wrd  is a fixed distance 

between the robot and the shallower bound of the workspace, which is determined by the 

robot arm’s workspace and also the view angle of the camera. Note that the robot 

orientation is determined by the position to make the robot face the objects, i.e. 

 1tan i

i

i

o r
r

o r

y y
x x

θ −
 −

=   − 
  (4.2) 

where ( ),o ox y  is the Euclidean mean of all visible object’s positions in the beginning 

of planning. Finally, all robot pose candidates can be expressed as a set: 

 ( ){ }, y , , 1,...,
i i i i ir r r r r r rPOSE p p x i Nθ= = =   (4.3) 
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Figure 4.1 Robot pose candidates ( 3rN = ) 

4.2 Search Planning 

At the beginning of planning, the robot first locates possible poses of the target in 

the occluded part of the workspace. With the aforementioned workspace and object 

models, the robot knows the workspace boundaries and the way to interact with each 

object. With such prior knowledge, the robot plans the search actions to find the target 

object. That is, given the proposed planner, the robot finally generates a plan which 

contains a series of these search actions. 

4.2.1 Actions in Search Planning 

There are three types of action: “Platform Move”, “Grasp and Place” and “Push-

aside”. First, “Platform Move” means that the robot moves to some predefined robot pose 

candidates to observe the workspace in different direction. Second, “Grasp and Place” is 

that the robot grasps an object, observes the workspace when the manipulated object is 

temporally removed from workspace, and places it in new object pose. Third, during 

“Push-aside” action, the robot pushes a large object to a new object pose and then 

observes the workspace. 
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These three types of actions differ not only in the robot motion, but also in the 

observation of the workspace. The “Grasp and Place” action has advantage over other 

two actions in observing the workspace with one object being removed. Further, the 

“Platform Move” allows the robot to change its viewpoint, and the effect is like moving 

several objects’ positions relative to the robot in one action. Finally, the “Push-aside” 

action makes large objects easier to be manipulated by the robot, and find the target 

quicker. 

Table 4-1 Comparison of action types 

Action Type Observation Advantage Disadvantage 

Grasp and Place Between grasping 
and placement 

Observe the workspace 
with one object removed 
from it 

Under the risk of 
manipulation 
error 

Platform Move After movement 
Observe from different 
position without touching 
the objects 

Hard to find all 
occluded target 
poses 

Push-aside After pushing Move ungraspable large 
object 

Need much free 
space for the robot 
to sweep over 

 

4.2.2 RGB-D Camera Perception Model 

The sensor used in this thesis for planning is an RGB-D camera mounted on the head 

of the robot. The perception model for RGB-D camera is pinhole camera model. We can 

project every voxel in the workspace to the image plane, which is a 480 by 640 matrix, 

with the pinhole model. After object modeling, the voxels occupied by objects are marked 

as each object category, as shown in Figure 4.2. If a voxel and an occupied voxel are 

projected to the same pixel and the voxel is farther than the occupied voxel, then the voxel 

is blocked by an object, so it is marked as “unknown.” The rest of the voxels are empty 

voxels, as shown in Figure 4.2. 
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(a) RGB-D point cloud scene (b) Objects and unknown voxels 

Figure 4.2 Objects and unknown voxels 

4.2.3 Hidden Target and Reveal Condition 

The geometry of the target is assumed to be known before planning. We can easily 

get the object model of the hidden target. To find possible pose of the hidden target, we 

check if the target geometry model occupies only unknown voxels at each pose ( ), ,x y θ . 

If so, the pose is a possible hidden pose. We denote the set of possible hidden target pose 

as HT  and the number of possible hidden target pose as HTN . 

The reveal condition specifies how the object is considered as revealed. It may vary 

with different positions and altitudes of the camera relative to the workspace. In our cases, 

the robot arm and workspace are lower than the camera. Therefore, we define the reveal 

condition as follows: A possible hidden target pose is revealed if one of the voxels of its 

geometry model that is higher than the half height of the target object is observed by the 

camera. Note that the revealing of a possible hidden object pose is an irreversible event. 

In other words, a possible hidden target pose which is revealed is permanently revealed. 

To track the condition of each possible hidden target pose, we define the “reveal state” 

( RVS ) as: 

 ( ) ( )
1 ,if is revealed

, 1,..., ,
0 ,otherwisei i HT i

ht
RVS rvs ht ht HT i N rvs ht

  = ∈ = =  
  

  (4.4) 
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4.2.4 Object Accessibility in Search Planning 

Object accessibility describes whether each object can be manipulated by the robot 

at each robot pose candidate. The accessibility condition of an object for a robot pose is 

one of the three: out of robot arm’s workspace, in workspace but blocked by obstacles, or 

manipulable. We can encode the accessibility as: 

 
1 , object is out of workspace at robot pose

0 , object is in workspace but blocked by obstacles at robot pose
1 ,object is manipulable at robot pose

ij

j i
a j i

j i

−
= 



  (4.5) 

The obstacles include other objects, possible hidden target, and the workspace 

boundaries except the frontal frame at the shallower bound. We check collision not only 

between the robot arm and obstacles, but also the manipulated object and obstacles. By 

identifying the accessibility of all the objects, the planner knows all the manipulation 

choice it has at the current state. The “object accessibility state” for search planning can 

be defined as: 

 ( ) { }, 1,..., , 1,...,S o i j r oACS POSE RVS a i N j N= = =   (4.6) 

where rN  and oN  are numbers of robot pose candidates and visible objects, 

respectively. The accessibility state is determined by the poses of the objects, reveal state 

of the hidden target, the location of all robot pose candidates, workspace boundaries and 

the robot arm kinematics. Since the latter three are invariant during planning, the object 

accessibility state is a function of the set of all object poses, denoted as oPOSE , and the 

reveal state. 

4.2.5 Graph in Search Planning 

The search planning is regarded as path finding problem in a directed graph. The 

node of the graph is a state in the planner which is the combination of the current robot 
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pose, object poses, and the reveal state of the hidden target, as shown in the following 

expression: 

 { }, ,
i ir o r rNode p POSE RVS p POSE= ∈   (4.7) 

A node is connected to its parent node with an edge which represents a feasible action. 

With an arbitrary node, denoted as kNode , and a feasible action in kNode , denoted as 

A , we can define an edge from kNode : ( ),kEdge Node A . By changing the definition 

of the cost function associated with the edge, we can change the behavior of the planner. 

In this thesis, we adopt the definition from [7] to minimize the expected time to reveal 

the target. The edge cost function is defined as: 

 ( )( ) ( )
( )( )1 ,,

k

HT A
e k ANode Node

HT

n
f Edge Node A T T

N
∆

= +   (4.8) 

where ( )HT A
n∆  is the number of possible target poses revealed due to action A , and 

AT  is the time required for the action. 1Node  is the initial node of the planner, and 

( )1 , kNode NodeT  is the time required from the initial node to the node kNode . 

4.2.6 A* Object Search Planning 

As stated in section 2.2, A* planning can find the optimal path with minimum edge 

cost sum to travel from the initial node to the goal node in the graph by estimating the 

future cost of nodes to the goal node with admissible heuristics. Therefore, before 

planning, we should define the initial node, the goal node, the past cost of each node, and 

the estimation of future cost. 

As shown in (4.7), a node contains the information of robot pose, object poses, and 

reveal state. The initial node is simply the state before the robot starts planning. In the 

initial node, the robot pose is ( )0,0,0  in global coordinates, objects are untouched and 
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all possible hidden target poses are not revealed. The goal node of the planning is the 

node that all possible hidden target poses are revealed. With a path from the initial node 

to an arbitrary node kNode , we have the past cost of kNode  and is able to estimate the 

future cost of kNode . The past cost of each node is the sum of edge costs from initial 

node to the node: 

 ( )( )
1

1 1
1

, , ~ :Current Plan
k

p e t t k
t

f f Edge Node A A A
−

−
=

=∑   (4.9) 

As for the future cost, [7] estimated the future cost of an arbitrary node kNode  as: 

 ( )( )1

,
,min,

k

k

HT Node
fs ANode Node

HT

n
f T T

N
 

= + 
 

  (4.10) 

where , kHT Noden  is the number of remaining hidden target poses and ,minAT  means the 

minimum time required among all feasible actions in kNode . The estimation expects all 

the remaining hidden target poses to be revealed with single action which takes the 

minimum time in all feasible actions of the current node. This optimistic estimation surely 

underestimates the future cost and is admissible. We call this future cost estimation as 

“single-action future cost estimation”, denoted as fsf . Figure 4.3(a) shows the 

illustration of the past cost and single-action future cost estimation. The area of the bars 

represents the expected time to reveal the target. We also draws the true optimal plan with 

blue dashed line. 

The performance of A* algorithm relies on the future cost estimation. If the 

estimated future cost is closer to the real future cost, the nodes that are considered will be 

fewer which then results in shorter search time. The exact future cost of each node is the 

expected time to reveal all hidden target poses from the node. If we assume that the robot 

can observe the workspace from all robot pose candidates at the same time, the objects 
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can be removed from the workspace without placing them back, and all objects are always 

accessible, and then the optimal plan is to always remove the object which occludes the 

most hidden target poses. This greedy plan, which simply ignores all constraints to choose 

an action, surely underestimates the expected time to reveal all target poses. We call this 

estimation as “greedy future cost estimation” and is defined as: 

 ( ) ( )( )1

1
1
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, ,

n
i i

k k n
i k
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HT Node HT Node

fg Node Node Node Node
Node Node HT

n n
f T T
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− 
= + 
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where nNode′  is the goal node in the greedy planner, and 1 ~k nNode Node+′ ′  are 

generated with the greedy planner under the above assumptions. The idea of greedy future 

cost estimation is shown in Figure 4.3(b). From Figure 4.3, we can conclude that if 

( )1,k kNode NodeT
+′ ′  generated from greedy planner is longer than ,minAT  in (4.10), then fgf  is 

guaranteed to be higher than fsf . However, whether this condition holds depends on the 

manipulator speed and platform mobility of the robot. If there are still many hidden target 

poses not revealed yet, fgf  is more likely to be higher than fsf  because the robot is 

more likely to manipulate objects multiple times to reveal all the target poses. If it has 

been long from the initial node to the current node, the future cost is dominant by the 

( )1 , kNode NodeT  term and these two estimation will not differ a lot. Furthermore, the time to 

calculate fsf  is much shorter than the time for fgf . Therefore, it is hard to tell which 

estimation is universally better. In this thesis, we choose the higher one as the final future 

cost estimation: 

 ( )max ,f fs fgf f f=   (4.12) 
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(a) Single-action future cost estimation (b) Greedy future cost estimation 

Figure 4.3 Comparisons of fsf  and fgf  

4.2.7 Action Sampling in Search Planning 

The workspace is divided into voxel grid with 1 cm resolution. For a normal size 

workspace, there are about 1000~3000 grid position to place an object; furthermore, if 

the object is non-cylindrical, the total poses will be over 200 thousands in worst case. 

Though in the implementation, the possible placement poses are much fewer (around 

100~200) due to the object’s size, object accessibility constraints and the robot arm 

workspace, the number is still too great to make the problem solvable for a computer on 

a mobile robot. With such high branching factor, constructing the graph is a great burden 

for the computer, not to mention the planning. However, among these possible placement 

poses, many of them are similar to other object poses and make little difference in later 

planning. For example, in Figure 4.4(a), the right cuboid is manipulated to reveal the 

occluded space behind it, and three of the possible new poses of the cuboid are shown in 

blue in Figure 4.4(b). However, both three placement poses share same current 

information gain and same object accessibility, which makes them similar in later 

planning. This makes the planner check many redundant paths in the graph and waste a 

huge amount of time. Therefore, it is important to reduce the branching factor to make 
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the problem solvable in some extent. There are three types of action available for every 

node: “Platform Move”, “Grasp and Place” an object and “Push-aside” an object. We 

reduce the number of last two actions. 

  
(a) The original object pose (b) Redundant placement poses 

Figure 4.4 Redundant actions 

In “Grasp and Place” an object, the workspace is observed when the manipulated 

object is being held in gripper. Therefore, the information gain due to the action is 

irrelevant to the object placement pose. The placement poses actually affect object 

accessibility in child nodes and the information gain of later actions, so we classify all 

child nodes caused by “Grasp and Place” the object by their object accessibility state 

SACS . Among each class, we choose one node as the representative. The representative 

node is the node that the manipulated object occludes minimum number of hidden target 

poses observed from all robot poses. If there is a draw, choose one with largest ox . 

In “Push-aside” action, the information gain is dependent on the pose of the objects 

being pushed. Therefore, we classify the “Push-aside” action by both the information gain 

and object accessibility state. As the “Grasp and Place” action, the child node with 

minimum number of hidden target poses observed from all robot poses is chosen as child 

states. 

4.3 Grasp Planning 

After the target object is revealed in an observation, as described in section 4.4.1, we 
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can estimate the target’s pose with the method described in section 4.4.2. The robot 

successfully locates the target object’s pose and the end of object search is reached. 

Nevertheless, the search is not considered as the end of a general robot task. In fact, the 

robot should further hold the target object in hand, so that it can deliver the object to its 

master. In many cases, the target object is seen by the robot, but still inaccessible. Thus, 

we need a planner for grasping the target object. 

4.3.1 Object Accessibility in Grasp Planning 

The object accessibility in grasp planning, different from the one in search planning, 

does not consider the reveal state anymore because the target is already discovered. We 

express the object accessibility state in grasp planning as: 

 ( ) { }1,..., , 1,...,G o i j r oACS POSE a i N j N= = =   (4.13) 

where rN  is still the number of robot pose candidates and oN  is the number of visible 

objects. Note that the target is one of the visible objects now, and hence oN  should be 

increased by 1. 

4.3.2 Graph in Grasp Planning 

The nodes of the graph in grasp planning are similar to those in search planning. The 

node of the graph in grasp planning is defined as: 

 ( ) ( ){ }, y , , , y ,
i i i i i ir r r o r r r rNode x POSE x POSEθ θ= ∈   (4.14) 

where the nodes are still connected by the edge of the three types of actions. However, 

the definition of edge cost function is different from that in search planning. In grasp 

planning, the robot plans for an action sequence that minimizes the time required to grasp 

the object. Therefore, the edge cost function is simply the time required to perform the 

action: 
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 ( )( ),e k Af Edge Node A T=   (4.15) 

4.3.3 A* Object Grasp Planning 

In planning, the past cost is the sum of edge costs from the start node, which is the 

total time spent from the start node. The definition of the past cost function is the same 

as (4.9) with the edge cost defined in (4.15). 

The robot grasps the target object from robot pose candidates. At each robot pose 

candidate, we select the approach motion of the robot arm to reach the target with 

minimum number 
ibN  of objects that block access to the target from the robot pose 

ir
p

( )ir rp POSE∈ . The approach motion of the arm from each robot pose to the target is 

fixed in the entire planning. Suppose the robot is at 
kr

p  in arbitrary node kNode . We 

can estimate the future cost of kNode  as: 

 ( ) ( ){ },min , ,
min 1 1,...,

i r ri k
f b Mani rMov p p

f N T T i N = + ⋅ + = 
 

  (4.16) 

where ,minManiT  is the minimum time required to manipulate an object, including “Grasp 

and Place” and “Push-aside” actions, and ( ), ,r ri kMov p p
T  is the time to move from current 

robot pose 
kr

p  to 
ir

p . Given the current node kNode , ( ) ( )( ),min , ,
1

i r ri k
b Mani Mov p p

N T T+ ⋅ +  

means the minimum time required to grasp the target from the robot pose 
ir

p , including 

the time for the robot to move to 
ir

p  from 
kr

p , to manipulate 
ibN  blocking objects and 

to grasp the target. Since the time required for each manipulation is underestimated, the 

future cost estimation is admissible. Figure 4.5 shows the future cost estimation in one 

exemplar node. The approach motion of the gripper in Figure 4.5 is a linear motion from 

the robot to target and is marked with blue arrow and surrounded by a rectangle 

representing the collision-free area of the gripper to grasp the target. 
 35 



 
Figure 4.5 Future cost estimation in grasp planning 

The start node of grasp planning inherits from the node of search planning when 

discovering the target. The robot pose is the same, but the object poses require a 

modification to include the target object pose into oPOSE , as mentioned in section 4.3.2. 

Moreover, if the robot discovers the target with “Grasp and Place” action, the robot enters 

the grasp planning stage with an object in its gripper. In this case, since the robot already 

grasped the object, the only feasible set of actions for the start node is “Grasp and Place” 

the object in gripper. The robot uses the same set of actions as in search planning: 

“Platform Move”, “Grasp and Place” and “Push-aside” to clear a path to grasp the target. 

The goal node in grasp planning is that the robot grasp the target. 

4.3.4 Action Sampling in Grasp Planning 

In grasp planning, we also sample object poses to reduce the branching factor of the 

graph. We classify the manipulation actions of each object in the way the same as in the 

search planning with the object accessibility state GACS . The only difference relies on 

the criterion to choose representative actions from each class. The robot should move 

obstacles outside arm approaching trajectory to the target. However, the robot does not 

know which trajectory will be used before the end of the planning and the space outside 
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all trajectories may not be enough to place all the objects. Therefore, sometimes the robot 

has no choice but to place the object to block one or some of the trajectories. 

We sample the placement position by choosing the object pose that blocks minimum 

number of trajectories. If there are multiple combinations of blocked trajectories with the 

same number, the robot sample one object pose of each blocking combination. If there is 

multiple choices of object poses in each blocking combination, select the one whose 

average distance to those unblocked trajectories is the highest. The distance between an 

object pose and a trajectory is defined as the minimum distance between the voxels of the 

object and the trajectory. By doing this, the robot reduces the number of blocked 

trajectories caused by the manipulation to minimum value, and also considers different 

approach direction. In Figure 4.6, the robot manipulate the elliptic cylinder to new poses 

to access the target. The poses shown in yellow blocks one approach trajectories, and the 

pose shown in blue does not block any trajectory. Therefore, the robot will manipulate 

the object to the blue pose. 

 
Figure 4.6 Action sampling in grasp planning 
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4.4 Sensor Feedback in Execution 

4.4.1 Object Registration 

We register object point clouds when they are obtained from different camera’s 

viewpoints with the feature matching approach. The feature points are extracted with 5D 

Harris Corner detector and encoded with ColorSHOT feature vector. Suppose we have a 

source object point cloud, sCLOUD , from observation, and we would like to find its 

feature point matching to a target object cloud, tCLOUD , whose object category is 

known and stored in the database. We map each point in sCLOUD  to a point in 

tCLOUD  that is nearest to the point in sCLOUD  in ColorSHOT feature space, and vice 

versa. Only point pair that are mutually mapped to each other is taken as a successful 

matched feature point. Suppose there are N  matched feature points, and we can 

compute their dissimilarity in feature space, namely, ( ),F s tD CLOUD CLOUD , between 

( ),s tCLOUD CLOUD  as: 

 ( ) ( ),
, F s t

F s t

d p p
D CLOUD CLOUD

N
 

=   
 

∑   (4.17) 

where 
( ),F s td p p
N

 
  
 

∑  means the average distance between matched feature point 

pairs in ColorSHOT feature space. 

Registering objects equals to finding correspondence or mapping of objects in 

current scene to those in database. The database is constructed at the time when the robot 

first observes the workspace, and it contains all the object clouds of each object categories 

including the target object, as shown in Figure 4.7. Later observations add more object 

point clouds in each object category from different view angles based on the registration 
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result. The object point cloud database is divided into ON  visible objects and the hidden 

target object htOBJ : 

 { }1 2, ,..., ,
ON htDatabase OBJ OBJ OBJ OBJ=   (4.18) 

Further, each object category ( OBJ ) is composed of iK  object point clouds: 

 { }1 2, ,...,
ii KOBJ CLOUD CLOUD CLOUD=   (4.19) 

 
Figure 4.7 Object database 

Because the object position during each registration is known, position cue is also 

included to help registration. The dissimilarity between an observation, sCLOUD , and 

an object, iOBJ , is defined as: 

 ( ) ( ) ( )
1

1, , ,
iK

s i E s i F s t
ti

D CLOUD OBJ d CLOUD OBJ D CLOUD CLOUD
K

λ
=

= ⋅ + ∑   (4.20) 

where ( ),E s td CLOUD CLOUD  represents the Euclidean distance between the centroids 

of two object clouds, and λ  is a weighting factor to balance these two measures. We 

map new observations to the known object categories in the database. The observation-

category mapping ( )M CLOUD OBJ→  is a one-to-one mapping and also a hypothesis 

of the categories of each observed object. To find the best hypothesis, we can define a 

cost function of each mapping as: 
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 ( ) ( )( )
1

,
S

s i s
s

f M D CLOUD OBJ M CLOUD
=

= =∑   (4.21) 

where S  is the object number in this observation. The mapping with minimum cost is 

the best correspondence and the final registration. If the target object in the database is 

mapped by an observation after the registration, we conclude that the hidden target has 

been revealed. 

4.4.2 Object Pose Estimation 

Object pose estimation is achieved by finding linear transformation of matched 

feature point. Suppose we have a new object point cloud observation sCLOUD  whose 

pose is unknown, and an object point cloud tCLOUD  of same object category in the 

database with known pose. The matched feature points in sCLOUD  and tCLOUD  are 

{ }1 2
, ,...,

Ns s sp p p  and { }1 2
, ,...,

Nt t tp p p , respectively. The feature points can be expressed 

as a matrix whose column is the points’ coordinate, and we get two matrices 3 N
sP R ×∈  

and 3 N
tP R ×∈ . The goal is to find the linear transformation ( ,R T ) from tP  to sP : 

 
1 0 1 1

s tP R T P     
=     

     
  (4.22) 

 The estimation is done by singular value decomposition (SVD) to obtain the least-

square solution of the linear transformation. 

4.4.3 Grasp Action Sensor Feedback 

When grasping the object, there exists some random error in the object’s position 

relative to the gripper and cause misalignment of the object and gripper. The error is up 

to a centimeter scale and may cause a fail grasp. We solve this problem by mounting an 

eye-in-hand RGB-D camera on the wrist of the robot arm to adjust the robot arm’s final 

motion. Since the object’s approximate position is known, we first filter out the 
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background with depth constraint. For example, the right bottle in Figure 4.8 is too deep 

to be considered as target, and thus filtered. The object boundaries of an object can be 

detected with great variation in depth, which is the depth gradient feature. The gripper’s 

approach direction is then fixed to align with the mean position of the boundary, as shown 

in Figure 4.8. The feedback also ensures the robot arm to extend the right length to prevent 

knocking down the object or grasping the object too shallow. 

 
Figure 4.8 View of wrist depth camera to feedback the grasp motion 

4.4.4 Move Action Sensor Feedback 

In executing the plan, the robot moves to different positions and needs to localize 

itself before manipulating the object. One way is to localize the robot in each frame during 

the process. However, this approach takes a lot of resource in computation. Since the 

robot only moves in short distance (<50cm) between each action in the scenario, the wheel 

odometry is still reliable as an initial guess of the robot’s position. Therefore, we only 

localize the robot before arm manipulation to make sure the manipulation is executed in 

the robot pose as planned. The robot pose is refined by matching views from last and 

current pose with Iterative Closest Point (ICP) approach [17]. With the help of the initial 

guess of the robot pose from the wheel odometry, the alignment is guaranteed to converge 

to the local minima closest to the initial robot pose. 
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Experiment Result 

5.1 Experiment Setting 

In the experiment, the robot is placed in front of a shelf. The dimension of the shelf 

block is 55 centimeter in width, 35 centimeter in depth and 34 centimeter in height. The 

bottom plane of the shelf is 93 centimeters above the ground. We set the number of robot 

pose candidates ( rN ) as 3, and fixed distance of the robot to the workspace ( wrd ) as 635 

mm. The time required for each action is determined by its action type. In the planner, the 

time for “Platform Move” action is 45 seconds, the time for “Grasp and Place” action is 

80 seconds, and the time for “Push-aside” action is 60 seconds. 

5.2 Evaluation on Object Search Planning 

We evaluate the performance of the object search planner by testing it on numbers 

of scenes, as shown in Figure 5.1 and Table 5-1. In each scene, we randomly place the 

object to test different conditions but do not change the object composition inside the 

workspace. The objects are placed at least 3 cm apart to allow the robot to manipulate 

them. Initially, the robot can see all the objects except for the target. Scene (a) and (b) are 

composed with three PET bottles with different density. Scene (c) and (d) replace one of 

the PET bottle in (a) and (b) with an object with irregular shape. Scene (e) and (f) both 

contain four objects, and there are two objects with irregular shape in (f). Scene (g) 

involves a large object which requires the robot to move the two PET bottles before 

manipulating it. Scene (h) tests the robot’s ability to planning search and grasp in clutter. 

 42 



Scene (i) is a general case containing small and large objects with various shapes. 

 
 

 
 

 
 

   

(a) (b)  (c)  

 
 

 
 

 
 

   

(d)  (e)  (f)  

 
 

 
  

 

   

(g)  (h)  (i)  

Figure 5.1 Front view and side view of the test scenes 

Target Target Target 

Target Target Target 

Target Target Target 
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Table 5-1 Details of the Test Scenes 

Scene Object Composition Description 
(a) 3 PET bottles The objects are placed loosely. (6cm~7cm apart) 
(b) 3 PET bottles The objects are placed tightly. (3cm~4cm apart) 

(c) 1 irregular object 
2 PET bottles The objects are placed loosely. (6cm~7cm apart) 

(d) 1 irregular object 
2 PET bottles The objects are placed tightly. (3cm~4cm apart) 

(e) 
1 irregular object 
2 PET bottles 
1 small bottle 

4 objects which include 1 irregular object 

(f) 2 irregular objects 
2 PET bottles 4 objects which include 2 irregular objects 

(g) 1 large box 
2 PET bottles 

The box is too wide to be grasped in the front, so it 
needs to be pushed-aside, but is blocked by the 
bottles. 

(h) 5 PET bottles The objects in the rear row is blocked and also 
stops the robot from placing object behind them. 

(i) 

1 large irregular object 
1 irregular object 
1 PET bottle 
1 small bottle 

Objects with different shape and size are placed 
together. 

 

Since this thesis hold different assumptions and plans a problem with much higher 

complexity than the state-of-the-art object search planner [7-9], we do not evaluate the 

proposed object search planner with these approach. Instead, we implemented two other 

planners to prove the advantage of the proposed planner. The first planner for comparison 

is the “greedy planner.” The greedy planner ignores long-term optimality and only 

maximizes the number of revealed target at each step and takes the minimum time. In 

other words, the greedy planner always maximizes the utility function at each step: 

 
( )HT A

A

n
U

T
∆

=   (5.1) 

where ( )HT A
n∆  is the number of possible target poses which is revealed at the step by 

taking action A , and AT  is the required time. When the robot grasps an object, the 

greedy planner always places the object to the pose with maximum x . The other planner 
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is the A* planner without action sampling. The A* planner will keep all possible child 

nodes of each node and find an optimal path in the state graph to discover all the target 

with minimum expected time. 

 We evaluate the planners by measuring their success rate to generate a plan, the 

planning time, the expected time to find the target, and the branching factor of the state 

graph. A planning is failed if the planning time is more than 10 minutes or the resulting 

action sequence is composed with more than 20 actions. Higher success rate means that 

the planner is more robust and reliable. 

If the planning successes, we also measure its planning time, the branching factor of 

the state graph and the expected time to find the target. Among these data, the planning 

time is an important indicator to tell if the planner is practical, and is highly correlated 

with the branching factor. The expected time to find the target indicates how well the 

planner achieves its original goal. 

The success rate of each planner is shown in Table 5-2. In simple case like (a), all 

planners are capable of generating a feasible plan. However, when objects are placed 

tighter, such as (b) and (d), the greedy planner sometimes fail to generate a plan because 

the objects are blocking one another and may require the robot to move an object without 

revealing any hidden target poses. In such situation, the greedy planner does not know 

which action is better and is stuck in the local minima by taking random actions without 

information gain. On the other hand, the A* planner fails when the optimal solution takes 

many steps to complete. Therefore, A* planner fails in most complex scenes because the 

time required to check every similar path in the state graph is too long, which shows the 

value of action sampling. 
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Table 5-2 Success Rate of the Planners 

Scene Greedy Planner A* Planner Proposed Planner 
(a) 10 / 10 10 / 10 10 / 10 
(b)  8 / 10 10 / 10 10 / 10 
(c) 10 / 10  7 / 10 10 / 10 
(d)  6 / 10  0 / 10 10 / 10 
(e)  4 / 10  0 / 10 10 / 10 
(f)  7 / 10  0 / 10  9 / 10 
(g)  3 / 10  3 / 10  8 / 10 
(h)  0 / 10  0 / 10  8 / 10 
(i)  0 / 10  2 / 10  8 / 10 

  

The proposed planner, also known as A* planner with action sampling, is able to 

find a plan in most scenes. The proposed planner survives in the scenes that fails the other 

two planners. However, there are still some situations which the planner cannot handle. 

Since the objects are randomly placed, sometimes none of the available manipulation 

action makes certain object accessible. Further, since we follow a greedy criterion when 

sampling child nodes with same object accessibility state, if an object is blocked by 

multiple objects, it is possible that none of the action sequences remove all blocking 

objects. In both case, if the hidden target poses blocked by this object cannot be seen by 

moving the robot platform, the hidden target pose will never be revealed. 

Figure 5.2(a) shows an example of failed scenes. The front row of the PET bottles 

are graspable by the robot but the two PET bottles in the rear row block the path of the 

arm to place the bottles to the deep workspace. Moreover, each of the two rear PET bottles 

are blocked by two bottles, so no single action available to make them accessible. 

Therefore, after grasping the front bottles and observing the workspace, the robot tends 

to place them back to their original position to block minimum number of possible hidden 

target poses, which cause the bottles in rear row never accessible. Figure 5.2(b) shows 

another example of failed scenes. Though the robot can push large objects aside to move 

objects which is not graspable, a push-aside action requires very wide free space for the 
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arm to perform it. In Figure 5.2(b), the large box is placed in the deep workspace and all 

sampled placement poses of PET bottles may block the arm to push the large box. 

 

  
(a) (b) 

Figure 5.2 Examples of failed scenes 

 

The planning time and expected time to reveal the target is shown in Figure 5.3. 

From scene (a), (b), (c) and (d), we can conclude that the expected time and planning time 

are longer if the objects are place tighter. This result is reasonable since the tight formation 

of the objects hinders the robot from revealing most hidden target poses by platform 

movement and forces the robot to manipulate objects. As a result, the planning time is 

highly correlated with the difficulty in manipulating the objects that occludes hidden 

target poses. These objects are usually large or placed in deep of the workspace. Therefore, 

the robot needs to plan many steps of action before manipulating the object. This effect 

causes the dense and complex scene such as (f) and (h) requires more planning time. 

However, in these scenes, most of the hidden target poses are revealed before 

manipulating the final object to reveal the last few target poses occluded by this object. 

Thus, the total expected time is not extremely high. 
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Figure 5.3 Planning time and expected time to find the target of the proposed planner 

 In scenes which greedy planner and the proposed planner both succeed in generating 

a plan, the planning time and the expected time to find the target is shown in Figure 5.4. 

Since the greedy planner only explore one path in the state graph, the planning time is 

much less than the proposed planner. Nevertheless, the expected time in greedy planner 

is longer than the expected time of proposed planner. The difference is not significant 

because the greedy planner can always find actions with high utility in the beginning of 

planning to reveal many possible hidden target poses, but struggles to reveal the target 

poses that is occluded by objects in the deep of the workspace. Therefore, in the scene 

where the greedy and the proposed planner both succeed, the difference in expected time 

is mainly contributed by the objects in the deep workspace. Therefore, the difference in 

expected time are longer in complex scenes than in simple scenes. 

The A* planner is guaranteed to derive the optimal plan to search the target object. 

However, it takes a lot of planning time to reveal all the hidden target poses. Figure 5.5 

shows the planning time, average branching factor and expected time of the A* planner 
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and the proposed planner on the scene where they both succeed in generating a plan. 

Although the expected time of A* planner is slightly shorter than the expected time of the 

proposed algorithm, the A* planner takes much longer planning time. The high branching 

factor of the A* planner is the main reason for its long planning time. Furthermore, the 

massively growing states also drains out the runtime memory and in turn drags down the 

computing speed. Therefore, the action sampling not only saves planning time but also 

reduces the computing resource required for planning. 

 
(a) Planning time 

 
(b) Expected time to find the target 

Figure 5.4 Comparison between greedy planner and proposed planner 
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(a) Planning time 

 
(b) Average branching factor 

 
(c) Expected time to find the target 

Figure 5.5 Comparison between the A* planner and the proposed planner 
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5.3 Evaluation on Object Grasp Planning 

In this section, we evaluate the performance of the proposed object grasp planner. 

Since the grasp planner aims to plan an action sequence after discovering the target object, 

we evaluate the planner by adjusting the scene shown in Figure 5.1 to make the target 

object visible at the first place and plan grasping. The test scenes is as shown in Figure 

5.6, and we do not change the object poses in this evaluation. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5.6 Test scenes in evaluation on object grasp planning 

 We evaluate the proposed object grasp planner with the A* planner without action 

sampling to test its planning time, time required to grasp the object, and its branching 

factor. As in object search planning, a planning is failed if the planning time is more than 

10 minutes or the resulting action sequence is composed with more than 20 actions. 
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The proposed planner successfully plans action in all test scenes, while the A* 

planner failed to generate a plan in 10 minutes in scene (f), (h) and (i) because many 

action steps are required to grasp the target. Figure 5.7 shows the performance of the 

proposed planner under all scenes. 

 
Figure 5.7 Planning time and time required to grasp the target of the proposed planner 

 Since the time required to grasp the target is highly correlated with the number of 

obstacles, and the number of obstacles determines the number of actions taken, the trend 

in planning time is consistent with the trend in time required to grasp the target. In (a), 

(b), (c) and (d), the scenes that the objects are placed denser, (b) and (d), require the robot 

to remove more obstacles to grasp the target than in looser scenes, (a) and (c). In (e) and 

(f), there are more objects, including the objects with irregular shape, which is placed 

densely and lengthens the planning time. The planner is still able to grasp the target in 

complex scenes, such as (h) and (i), as long as there exists free space for the robot to grasp 

objects and place it. 

 Figure 5.8 and Figure 5.9 shows the planning time and time required to grasp the 
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target of each scene which is successfully planned by both planners. The proposed planner 

uses much less planning time to get a nearly-optimal solution compared to the optimal 

solution of A* planner. In summary, the proposed planner performs better than A* planner 

in simple cases, such as (a), (b), (c) and (d), for shorter planning time, and is more robust 

and much faster in planning under the complex scenes, such as (e), (f), (g), (h) and (i). 

 
Figure 5.8 Planning time 

 
Figure 5.9 Time required to grasp the target 
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5.4 Overall Test 

The overall action of object searching and grasping is performed to show the 

practical use of the proposed planner and system. Figure 5.10 and Figure 5.11 show one 

of the case involving 3 cylindrical objects and an object with irregular shape. The robot 

searches the target by arranging the position of objects and plans grasping after the target 

is discovered. Figure 5.12 and Figure 5.13 show a scene which includes a large object. 

As proposed, the robot is able to push large object aside and discover the target. 

  
(a) The test scene (b) Workspace voxel grid of the scene 

Figure 5.10 Overall test scene 1 

 

 

 

 

 

 

 
Moves to pose candidate 1. Observe the scene.  

The target is still hidden. Grasp Object 4. 
 

 

 

 

 

 
Observe the scene. 
The target is found. 

Place Object 4 to the deep 
right. Grasp Object 3. 
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Place Object 3 to the shallow 
right. Move to pose candidate 3. Grasp the target. 

Figure 5.11 Action sequence in overall test scene 1 

 

 

  
(a) The test scene (b) Workspace voxel grid of the scene 

Figure 5.12 Overall test scene 2 

 

 

 

 

 

 

 
Moves to pose candidate 1. Observe the scene. 

The target is still hidden. Grasp Object 2. 

 

 

 

 

 

 
Observe the scene. 

The target is still hidden. 
Place Object 2 to the deep 
right. Move to pose candidate 3. 
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Observe the scene. 

The target is still hidden. Grasp Object 1. Observe the scene. 
The target is still hidden. 

 

 

 

 

 

 
Place Object 1 to the deep 
left. Push Object 3 to left side. Observe the scene. 

The target is found. 
 

 

 
 

 
 

Direct grasp the target.   
Figure 5.13 Action sequence in overall test scene 2 
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Conclusion 

In this thesis, we proposed the world’s first object search system based on both robot 

manipulation and active visual search. By modeling the workspace and objects, the robot 

plans an action sequence to retrieve the target object. We samples the possible child nodes 

in the planner to simultaneously reduce the planning time and keep valuable choices for 

next action. In the experiment, we compare our approach with a greedy planner and an 

A* planner. The results show that the proposed approach is able to generate a plan in 

reasonable planning time and is more robust than two other planners. 

6.1 Future Works 

The complexity in planning in limited workspace is extremely high and even a 

feasible plan may not exist due to lack of space inside the workspace. In reality, the space 

is usually limited, but there may be some space outside the shelf block for the robot to 

put objects. Therefore, in future works, we would like to expand the limited workspace 

to spaces outside the block. The robot may divide the space into separated slots to place 

the objects. In this manner, we can incorporate the planner which allows the robot to 

permanently remove objects from the workspace to reduce the planning complexity and 

make the planner more practical and more flexible. 

In our assumption, the objects are placed separately to let the robot manipulate them. 

However, in real world, objects are often stacked together and difficult to be grasped with 

the parallel plate gripper. Although [18] proposed a physical-based scheme to analyze the 

effect of collision between the gripper and multiple obstacles to complete grasping in 
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clutter, object searching in clutter requires much more accuracy in object motion. 

Therefore, we believe that the solution for object searching in clutter lies in minimizing 

the collision in manipulation. A new gripper design for robot to manipulate object in 

clutter is thus also a possible direction for future works. 
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