Red A ST BT RERT L 2)
L

Department of Electrical Engineering
College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

ANIERFEZLZAFBENPELFFS L AP R
Search Algorithm based Planning on Finding and Grasping of
Occluded Target Object with a Mobile Robot Manipulator

o= A

Yu-Chi Lin

g gy gl
Advisor: Li-Chen Fu, Ph.D.

PER K103 & T2
July, 2014

B 32 K22
nRLBEeEFELE
EAMFRAEZZAIBHAMRE F5F FHRE KRB
i B A4
Search Algorithm based Planning on Finding and Grasping

of Occluded Target Object with a Mobile Robot
Manipulator

A ARARE (£ R01921003) £BAEE AL EHIE
PARAARZALTEME NRA 103 £ 7 B 22 8ATH#REH
FEHEBR ORRK > HFLEH -

= = /]’

bt Sk
1||-..'::|--'l.1‘
o

L

(&%)
(45 %442)

322%’5459 ga Z/_(-:, 5%

.
L.

X (@3 LP@Q 2; (B2)

2

-+ 2
Loy

BAOAZREBA DA 5 RWE P AR R oS LY R
TR-SR K- B WBEA R KT A8t ahdp ¥~ DEMO s g2 P B2 AR
% prend @ Rt Vgl SRS REFP I A AN LF DL EE G P
RS AAS N R N AT R VAR E RIS] FRF R
BHRY FY - Al FE 2P FE AN PFET g2 Sk £ Tahg k=
DEMO - # d5ichifaf £« J W B L HF Benfes ~ 73 R { LLEFAZ

~ \Q\
34

)

=

= - R s RECAG O FHRTHRIRETLE ~ARE S~ AP
- 42% % DEMO~ iT9 8% ~ @ 5% 2 Prx ~ el R~y *App\—g’d—' ’L% v A=
B EY 4P - e p R IF4LEF =t DEMO £ £ 18 v 38 o
Thmv a1 &R HE i oo per FH3 0k XEFHEF
MER G NRFRERFA IR EFTRTTIRARAEE R L 9] BB
Bk R DEMO $0t K th v B e R e h v kT e B
ASLPANES IR BLEARN T FROFFRISEHY BB RL AR
IRV L BRI AR Y IFF AL EhRH (F
2l o FRREHILEELE At AH T O PFEFRES 2T aRth N Tk
PR AT TR F AR B
U SRR kAo

\Tﬂ

bR LIS B L RFE 6 e B pE
RHTH R EDEg s 0B R2en 2 3 $F 8T pFanthy gk
Wb-en sk AR PR R I g B W R IR E LA AR
SRR Y ‘_—'ﬁ%%rﬂ&i e PRI - AedBies £ F AN E S .
FALAEY A Y = PO heehes 300 F LRHEHE LA B E el
(BF (& S i A P'—' %gné;ﬁ— AREAE DR F TR C BRI e S S
EENE RO RAEERELF K AP T o AT § S TR et
SHEATAUPELR BUE M C AN HFAAALET I E 2 E § o HP
TS BRI ARG AR L R FHHT T o
* B

7

2014/7/29

R

EEWEA G P BEd L Rubnbrd_ e YR 3 2 RAeIRE 0 M EA A
A BB RS IBAEE LA TR W EARZE L ML ALY

SRR A SR B A f RIEY MR F R S Y R Y e

FBHR T EILH R DAY S BERFE AR R T BB AT
BB P GAEF PR DB o R B E ARG N R R REHE T R

REZBRE? OF BE&E o Ra > AZFLRY F AT NRE &5 ST
RE SO GHEF D T LD IR Fl 3T e peik 2 0 S B SR S i

Pruddp R E R FE AT PR RLBBABERRF DTS TR

Ehfthe AP E T I ESEBGRS SR LB 0F 2] R
NI - FEAES S P RE A PR T IR R RRRE T
LR BB KL FAOF o A RO RBEL L b F RN E T
A AR SRl PR REE L P R ANRE RS AF L
P EEE S B OB R ARG kR Y e AL T R R
A BFEE AT E B A PSS EATEN S ST TRE ? WF P T

RTINS A LR SN ST

MAET T E SRR (0, 0F BRG], 750 B 1 E

ABSTRACT

As robots and robotic researches marching from factory to office and home, the
ability of robot to interact with complex human-living environment becomes pivotal. To
show its value, the robot should be able to do various tasks as an assistant in human-living
environment. Searching and delivering object in indoor environment is one of the tasks
practical to user. Previous study mainly focused on visual search of objects in indoor
environment. The search is performed by a mobile robot which plans a best route to
observe the environment and discover the target object. However, in real world, objects
may be occluded by other objects or structures, which means pure visual search is
impossible to find these targets. As a result, some recent works discussed the object search
method by removing objects that block and hide the target object.

In this thesis, we propose an object search planning system that combines visual and
arm manipulation search. The robot can either reposition one of the accessible object with
its arm or move its platform to view the environment from a different position to discover
the target object. The concept of planning is A* Planning which minimizes the expected
time to discover the target and then the time to grasp the target in clutter after its discovery.
Visual sensor feedback is included to assure the accuracy of each action performed by the
robot. We evaluate the proposed approach with experiment in the scenario of object search

in a shelf environment where objects may occlude or block access to one another.

Keywords: robot arm manipulation, object search planning, office robot

CONTENTS

TRE R € F T i #
B e s [
B g R o ii
ABSTRACT ettt ettt b e e n bt et e e eab e et e e neeeree i
CONTENTS ettt et b e b bt et e e sat e e be e sneebeeenn e v
LIST OF FIGURES ... oottt e e e Vil
LIST OF TABLES ...ttt e be e e e enaeas IX
Chapter 1 INtrOQUCTIONcoiiiiiiic e 1
00 R /(o] £ V7 L1 o] USSR 1

1.2 Problem FOrmMUIAtioNcccooiiiiiiiie e s 2

1.3 CallENGES. ... i 4

1.4 RelAted WOTKS.......ooieieeieeee et 4

I O o] [<Tox (S USSR 6

1.6 TheSis OrganiZationccccueueiienenieiiesie et 6
Chapter 2 Preliminaries ... 7
2.1 SYSIEM OVEIVIBW ...ttt sttt be e b b enee e 7
2.1.1 Hardware SYSTEIMcccoooiiiieiieeiienie sttt 7

2.1.2 SOTtWAIE SYSIEM . ..o e 8

2.2 AT AIGOITINM .o e 8

2.3 Random Sample Consensus (RANSAC)......ccccoeririiiirneee e 9

2.4 Object Feature Detector & DesCriptor........cocveierieiiienie e 10
2.4.1 5D Harris Corner DeteCtOrcocveieiierienie et 10

iv

P S OF0] [0] 031 o [@ 1 I B 1= Tod] o] (o] S e S 12

Chapter 3 Workspace Model and Object Models ..ot 14
3.1 WOrKSPace MOcvvieieiieeiece e et re 14
3.2 Object Geometry MOdelcccooveiiiiiiiiiceec e 16

3.2.1 Geometric Primitive Model-based Object Modeling.............ccccuvenuee. 16
3.3 ODbject POSE MOMEL.........cccueiieeeie e 17
3.4 Object Manipulation Model...........cccooviiiiiiiiiiecee e 18
3.4.1 Grasp Manipulation.........cccccveiviiieiieeiesiese e 18
3.4.2 Place Manipulation..........ccccveiviiieieeie e 19
3.4.3 Push-aside Manipulation............cccccveveiiieiieresie e 20
3.5 Object Pose Prediction after Manipulation...........c.cccccecevieviveiesieneerieceene 21
3.5.1 Grasp Manipulation..........ccccueveiiierieeie e 21
3.5.2 Push-aside Manipulation............cccccvevueiiienieie e 22

Chapter 4 Planning and Sensor Feedback in EXeCUtioncc.coevviinieininnnn, 24
4.1 RODOt POSE SAMPIING.....ciiiiiiiieiie s 24
4.2 Search PIaNNINGcoouoiiiiiii s 25

4.2.1 Actions in Search Planningccocveveiinieenenie e 25
4.2.2 RGB-D Camera Perception Modelcccooceiiiiiiiiiniiencieieee 26
4.2.3 Hidden Target and Reveal Conditionccccooveiiiniiin e 27
4.2.4 Object Accessibility in Search Planningc.ccooeviiininencnieneennne 28
425 Graphin Search Planning.........ccoocoviiiiiiiiinieieseeese e 28
4.2.6 A* Object Search Planningccoceeviiiniienenie e 29
4.2.7 Action Sampling in Search Planningcccocoveiieiiiiniienenieneee 32
4.3 Grasp Planning.......ccoooiieiiiiiiiesecie e e 33
4.3.1 Object Accessibility in Grasp Planning..........ccoccoovevinininncninniennns 34

\Y

4.3.2 Graphin Grasp Planning........cccoceiiveiiiieiieie e ssie e 34

4.3.3 A* Object Grasp Planningccccovveiviieieeie e s sinsnns s 35

4.3.4 Action Sampling in Grasp Planning...........cccocvevviienieiiisiieiceeinne e 36

4.4 Sensor Feedback in EXECULION...........ccviiiriciiiicccsees e 38
4.4.1 ODbject ReQISratiON.......c.ciiveieeie e 38

4.4.2 Object Pose EStIMALIONccccoveiiieiieecie e 40

4.4.3 Grasp Action Sensor Feedbackcccoovvveiieiieiiiein e 40

4.4.4 Move Action Sensor Feedback...........ccovorireiiiiniiiseees e 41
Chapter 5 EXPeriment ReSUIT ... 42
51 EXPeriment SEtINGccveieieeiieie e 42

5.2 Evaluation on Object Search Planningccccceevvvvvivesiieneeie e 42

5.3 Evaluation on Object Grasp Planning..........cccceeviveeiveiesieseere e ese e 51

5.4 OVEIall TES....ceiiiieieisie e 54
Chapter 6 CONCIUSIONociiiiiiiii 57
6.1 FULUIE WOTKS....c.eiiiiiieiieee e 57
REFERENQ E ...ttt se et sin e e nbeeeneas 59

Vi

LIST OF FIGURES

Figure 1.1 Typical scene in object search by manipulationc.ccoccoviiinniiiiinniienns 2
Figure 1.2 General process of searching and grasping the target...........cccccooevinieniennncns 2
FIGUIE 2.1 ARIO ... ittt bttt b et nnesre e b 7
Figure 2.2 Flowchart of the SOftware SYSteMcocueiieiiiie e 8
Figure 2.3 Examples of objects similar in Shape..........ccoooveriiiiininiieeeeee e 10
Figure 2.4 ColorSHOT Feature DeSCriptor[L16]cccoovrerrerienieniinie e 13
Figure 3.1 Workspace Model and Object MOdelS..........ccoverieiiininiieiieece e 14
Figure 3.2 Workspace and itS diMENSIONccuvieeiiiieiieieeiesee e s 15
Figure 3.3 Grasp manipulation...........cooiiiiiiiiiieniee e s 19
Figure 3.4 Push-aside manipulation ..o 21
Figure 3.5 Grasp MOUEL.........oiiiiiiieiiee e 22
Figure 3.6 Push-aside MOdel............ccoveiiiiiiee e 23
Figure 4.1 Robot pose candidates (N, =3)...c.ccceiiiiiiiiiiic s 25
Figure 4.2 Objects and UNKNOWN VOXEIScccueieiiieiiiiiiieeie e s 27
Figure 4.3 Comparisons of . and f ..., 32
Figure 4.4 Redundant aCHIONS.........c.civeieiieieeie e et sneesae e ens 33
Figure 4.5 Future cost estimation in grasp planning.........ccccecevveviieievieecie e 36
Figure 4.6 Action sampling in grasp planningcccccceveveeienienie e 37
Figure 4.7 ODject database.........c.ccueiieieiie e 39
Figure 4.8 View of wrist depth camera to feedback the grasp motion.............ccccccueeee. 41
Figure 5.1 Front view and side view of the test SCENESccvvrvvevieie v 43
Figure 5.2 Examples Of failed SCENEScciveieiieiiee s 47

Figure 5.3 Planning time and expected time to find the target of the proposed planner.48

Figure 5.4 Comparison between greedy planner and proposed plannercccceu..e.. 49
Figure 5.5 Comparison between the A* planner and the proposed planner.................... 50
Figure 5.6 Test scenes in evaluation on object grasp planning...........cccocceveeverivervenene. 51

Figure 5.7 Planning time and time required to grasp the target of the proposed planner52

Figure 5.8 PIanning tIMEoiveecie st 53
Figure 5.9 Time required to grasp the targetcccocveve e 53
Figure 5.10 OVerall teSt SCENE Lccviiveieiee e 54
Figure 5.11 Action sequence in overall teSt SCENE L.......ccovvvvevieiiieiieie e 55
Figure 5.12 OVerall teSt SCENE 2ocvveieeeie e 55
Figure 5.13 Action sequence in overall teSt SCENE 2.........cevveveiieiieie e 56

viii

LIST OF TABLES

Table 4-1 CompariSon Of ACHION TYPESccviiieiieieiie e

Table 5-1 Details of the Test Scenes

Table 5-2 Success Rate Of the PIANNErSooovevveeee,

Chapter 1

Introduction

1.1 Motivation

Researches on service robots boomed in this century, and the research society
continues growing. Although most of service robots are not commercialized yet,
researchers in labs from all over the world have made robot do various tasks. One of them
is the object grasp and delivery with gripper. However, we demand more than that. In
most of the robot demonstration, target object is assumed to be placed in an open space
where the robot is able to see and grasp the target directly. Many researches have been
done to analyze how the robot grasps objects in such scenario. In reality, however, objects
are usually placed in clutter, which means the robot may not be able to grasp the target
directly. Furthermore, in many cases, objects are placed in a fridge or cupboard and
occluded by other objects, as shown in Figure 1.1. In both cases, the robot needs to plan
the actions in order to find and grasp the target. In this thesis, we aim to solve the robotic
object search planning problem by allowing the robot to manipulate objects and change
camera viewpoint in order to gain more information about the space and to discover the

target.

i

(a) Front view of the objects (b) The target object is occluded

Figure 1.1 Typical scene in object search by manipulation
1.2 Problem Formulation

We formulate the problem as the robotic object search and grasp planning in limited
workspace like fridge or cupboard. In such cases, pure visual search is not enough to find
the target, and the robot should also manipulate objects in the scene to reveal the target
and clear a path to grasp it. In the first place, the target object is hidden behind several
objects in the workspace. The robot percept the scene and register each object in view
with 3D sensors, such as RGB-D camera, stereo camera or LIDAR. A series of actions
are generated according to the perception result to discover and then grasp the target
object. To achieve this, the robot can either move objects to new positions or change the

robot pose to better approach certain object or view the workspace in each action in series.

Step 1

y. /

Execute the plan to move Observe the scene and spot
obstacles the target

Step 5

Grasp the target

Plan to grasp the target,
and clear a path to grasp it

Figure 1.2 General process of searching and grasping the target
2

When making a decision on which action to perform, the robot should consider both
the “information gain” and the “accessibility effect” caused by the action. “Information
gain” means how possible the target object will be revealed after this action. Intuitively,
the robot tends to take actions with maximum information gain to quickly find the target.
Nevertheless, this greedy strategy will not always work. The objects are placed in clutter,
so the robot may not be able to access every object, including the one with maximum
information gain, in the workspace. Furthermore, the robot should also consider where to
place the object to benefit later actions. In other words, during the planning, the robot
should also considers if the action makes other objects accessible or inaccessible. This
effect of the action is summarized as “accessibility effect.” The robot should be able to
balance both considerations and plan a solution to find the target as soon as possible.

To better analyze such complex object search problem, several prior conditions need
to be assumed in order to make the problem tractable. First, we assume there is only one
hidden object in the workspace, which is the target and the geometry and object cloud of
the target are known a priori. This assumption allows us to plan the search process based
on object knowledge that can be visually acquired online, which are geometry and pose
of every object except for the target in the workspace. Though it is possible to have more
than one objects that are hidden, we may re-plan after spotting hidden objects other than
the target. Thus, without loss of generality, we still assume the target is the only hidden
object in order to make our solution clearer. Second, we let the robot arm always approach
objects in horizontal direction. Third, all objects are standing on a horizontal plane and
convex in outer contour of each slice parallel to the XY plane. Finally, the object’s center
of mass is assumed to be the geometric center of the object. These four conditions are set
mainly for our explanation about how to select the grasp points throughout the planning

so as to reduce the problem complexity.

1.3 Challenges

In this thesis, the workspace is assumed limited, which implies that the objects are
impossible to be removed from the scene. Instead, they are moved to new poses inside
the workspace and may affect subsequent actions and plan. The planning thus becomes a
“reconfiguration planning” problem with great complexity. Furthermore, since an action
influences following actions, a sensor feedback system is required for the robot to make

sure that each action is performed accurately.
1.4 Related Works

In the field of object search by a mobile robot, the former researches focused on
active visual search of objects. Such category of researches [1-5] assumes that the target
object is placed in open place in the map where the robot can see directly. The planning
determines where the robot should go to gain more information about the environment to
find the target more quickly. Among those works, [2-4] further utilized the semantic
meaning of objects and the spatial relations among objects to search the target object more
quickly.

In recent years, numbers of results on “Search by Manipulation” have emerged. In
real life, the objects are often placed in fridge or cupboard. The objects are occluded and
blocked by other objects, which forces the robot to search the target by arranging the
objects with the manipulator. It is worthwhile to mention that the works, [6] and [7], are
pioneers in this field of study, but they addressed this problem in a quite different way.
For example, [6] formulated the problem as a search of an object in multiple containers.
They analyzed the probability of each container containing the target object with space
constraint in each container and object co-occurrence relation. The robot then searches
the container with high probability in containing the target by manipulation.

4

Furthermore, [7] and its final form [8] addressed this problem as an optimization in
expected time to search the target in single container. Among all related works, this work
correlates with our work most. In fact, despite that our problem setting shares some
similarity to theirs, such as the target being the only hidden object and the expected search
time being optimized, our problem scope becomes more general in the sense that several
of their conditions are relaxed here. Specifically, our robot grasps the object in multiple
direction, and observes the container more freely at number of poses. When facing large
objects which is ungraspable, the robot may push it aside to discover the target object.
Moreover, the robot is not allowed to permanently remove the objects from the scene,
which turns out to be more challenging.

In former works [7, 8], under fixed camera pose assumptions, the occluded volumes
may be divided into separated parts, and the search by manipulation planning can be done
independently in these separated occluded volumes. By doing this, the robot can search
the occluded target rather efficiently. In our scenario, the robot is allowed to observe the
objects at different poses, which makes the robot more easily find the target, but there are
inevitably many intersections of the occluded volumes observed from different camera
positions. Therefore, the algorithm proposed by [7] fails to be applicable to our scenario.

Besides, [9] also discussed this problem by dividing the workspace into large grids
and each object can only be contained in one grid. They also assumed a fixed camera
position in planning. However, different from [7], they rearrange objects to a new grid
position inside the container to explore the grids behind the grid which the object
originally situated in. They model the object visibility and accessibility with single grid
world, which is unrealistic. In their framework, the objects can be manipulated with push

action to handle objects with large size.

1.5 Objectives

In this thesis, we propose a planner based on A* planning to optimize the expected
time to search the target object, which is occluded by several visible objects, in a limited
workspace like cupboard, shelf and fridge. We combine the active visual search and
manipulation search in single framework. The robot can either move to different poses to
observe the workspace or manipulate one of the objects. After the object’s discovery,
another planner to optimize the time required to grasp target is performed. In execution,

the robot fixes its motion with sensor feedback to ensure the plan is accurately executed.
1.6 Thesis Organization

This thesis is organized as follows: In Chapter 2, we give an overview of our system
architecture and hardware, and briefly introduce the tools and algorithms used in this
thesis. In Chapter 3, the process to model workspace and object is discussed. The
workspace and object models are input of the planner. In Chapter 4, the main contribution
of this thesis, the search and grasp planner, is introduced in detail. After the planner, the
sensor feedback in execution is also included in Chapter 4. Chapter 5 shows the
experiment setting and result to evaluate the performance of the proposed approach to

search and grasp target object. Finally, we conclude this thesis in Chapter 6.

Chapter 2

Preliminaries

2.1 System Overview

2.1.1 Hardware System

The hardware system is a mobile robot called ARIO, as shown in Figure 2.1. The
robot is equipped with a differential drive and a 5-DOF gripper. Since each motor on
ARIO has been paired with an industrial quality motor drive responsible for handling
precise dynamic control, in our research we only need to implement high level position
control to control various robot tasks. The sensors used in this thesis include an Xtion Pro
RGB-D camera mounted on the head of the robot and a DS-325 near range RGB-D
camera installed on the wrist of the robot arm. Xtion Pro on the head is used as the main
sensor to percept the whole workspace, while DS-325 is served as a sensor feedback tool

to increase accuracy of the grasp actions.

Xtion Pro Live
RGB-D Camera

DS-325 Near-range
RGB-D Camera

5 DOF Robot Arm

Figure2.1 ARIO

7

2.1.2 Software System

The software system is composed of 4 parts, as shown in Figure 2.2. At first,
perception module models the workspace and objects based on raw RGB-D data. The 3D
perception in this thesis is implemented with Point Cloud Library (PCL)[10]. The search
planning module then plans a series of search actions with the model derived from
perception module. Execution module carries out the plan and fixes every action with
sensor feedback to minimize execution error. After the target is spotted, the robot plans

to grasp the target in clutter and executes the action with the execution module again.

Perception
Start > / i
Module Workspace Model & Object Model

v

Search

Module

Workspace Model & Object Model 4 Planning Search Plan i

Search
v
> Search or Grasp? Grasp Plan— Execution § > SEENS
P P Module Observation
Grasp Grasp
Workspace Model & Object Model g Planning
Module
A
No Yes v
. No ar
Update Yes Object Mode . Search
- - Target Discovered? g Search or Grasp?
Object Model Change? g 1SE0K 5P
Grasp
No
' Target Grasped? g

Yes

End -

Figure 2.2 Flowchart of the software system
2.2 A* Algorithm

A* Algorithm [11] is a best-first search algorithm to plan a least-cost path from start

node through multiple nodes connected by edges to a goal node. It is an improvement

from breadth-first search algorithm to always check the most promising child node first
to reduce the search space. A* algorithm keeps track of every node’s cost from start node,
which is the “past cost” of the node. Furthermore, A* algorithm estimates each node’s
cost to the goal node, also known as “future cost”, and always finds the child nodes with
the minimum past and future cost sum. If the future cost meets admissible heuristics, the
A* algorithm can always find an optimal path from the start node to the goal node. A*
algorithm has several advantages in planning. One of them is that A* algorithm can be
implemented only with the connection relation between nodes and the heuristics for future
cost estimation for each node. The algorithm does not have to know the neighborhood of
goal node in the beginning of the search, which is very convenient in the cases where the
position of the goal node in the graph is unknown or there are multiple goal nodes.
Another advantage of A* algorithm lies in the memory usage and computational
complexity. Since A* algorithm always expands the child nodes with the minimum past
and future cost sum, it visits fewer nodes than breadth-first search and does not have to
keep the full graph with all nodes. Instead, the robot only memorize nodes being traversed
and their child nodes. Such characteristics is especially advantageous when the growing

graph costs much.
2.3 Random Sample Consensus (RANSAC)

Random Sample Consensus [12] is a method to estimate parameters of a model from
a set of data which contain outliers. The method first randomly samples some data from
the whole dataset and then fit them with the model, find parameters of the model, and
then check the number of data that can be described by the model. If the number is high,
it is a good fit and hence the model parameters are recorded. The model can be refined by

taking more iteration of sampling. This method has advantages in finding the model

parameters when there are significant amount of outliers.
2.4 Object Feature Detector & Descriptor

In execution, the robot may move to several locations and view the workspace at
different poses. To register the same object seen at different viewpoints, we match features
extracted from the objects. To find feature correspondence in point cloud data, the most
intuitive method is feature detector and descriptor based on the local 3D geometry of the
object. However, in real world, many objects have similar shape, as shown in Figure 2.3.
Therefore, we also include the color or gray scale intensity cue to find feature
correspondence. After careful evaluation, the 5D Harris Corner feature detector is
adopted in this thesis. After feature extraction, each feature point is described in
ColorSHOT descriptor for matching. Though feature detectors and descriptors
considering both geometry and color are more computationally expensive, they are more

robust under uniformity in either color or geometry.

@ o (b)

Figure 2.3 Examples of objects similar in shape

2.4.1 5D Harris Corner Detector

5D Harris corner feature detector is an combination of 2D Harris which is proposed
by Harris and Stephens [13] to detect corners in grayscale image and 3D Harris that
detects geometric corner in 3D surface [14]. Since it merges 2 Harris corner detector, the

input data of 5D Harris must be dense structured point cloud, whose every point p

corresponds to a pixel (u,v) in the image plane. The result of 5D Harris considers the

10

corner both in geometry and grayscale intensity.

2D Harris feature detector detects pixels in the grayscale image. that have large
variation in intensity in both directions. By checking the difference between the target
pixel and its neighboring pixels, we know how large the intensity variation is in the target
pixel’s neighborhood. The 2D Harris corner is computed by finding the eigenvalues of
the sum of intensity gradient covariance matrix, S, over a neighborhood window W .

SEEDY ['XZ ';Ly}(z Il (2.1)

(U,V)EVV Ix Iy U,V)EVV
T
l=[1 1,] (2.2)
where (u,v) is a pixel inside the window, and [IX Iy]T is the intensity gradient at

each image coordinate (u,v) along X and y directions, respectively.

In 3D Harris, the grayscale intensity is replaced by surface normal at the point on

the surface. The neighborhood (NB) of a point is defined as a sphere centered at the

point with user-defined radius. The 3D Harris covariance matrix is calculated as:

S=> N,N; (2.3)

peNB
.
N,=[N, N, N,] (2.4)
where N is the normal vector at point p. In 5D Harris, we concatenate N and |

to form the vector containing derivatives in both XYZ space and grayscale image plane,

namely,

D,=[N] 1]] (2.5)

The sum of covariance matrix over the neighborhood is defined as:

S=> D,D, (2.6)

peNB

11

with the covariance matrix sum, each point can be scored with the Harris response

function:
H (p)=det(S)—trace’(S) 2.7)
2.4.2 ColorSHOT Descriptor

Generally speaking, we need a descriptor to show if an extracted feature point is
similar to other feature points, and ColorSHOT [15, 16] is one. ColorSHOT is an
improvement of the original SHOT (Signature of Histograms of OrienTations) descriptor,
which only focuses on shape feature. ColorSHOT considers both shape and texture (color)
of the neighborhood of the feature point. In ColorSHOT descriptor, all neighboring points
are mapped to a reference frame based on the Eigenvalue Decomposition of the scatter
matrix of the points which are neighbors of the feature point. Note that these points are
divided by grids in spherical coordinates.

The descriptor describes the local shape feature by defining a histogram in each grid
with bins representing different values of inner product between the normal vector of the
point and the feature point vector. For color part of the descriptor, the histogram is
composed with of bins of the distances of points to the feature point in RGB space

expressed as:
<(C:.C,) Z|c | (2.8)

where C; and C, are three dimensional RGB color vectors at the feature point and an

arbitrary point, respectively. The distance is actually a 1-norm in RGB space. The color
space can be replaced with CIELab or HSV. Finally, the descriptor vector is constructed

by concatenating the shape and color descriptor vectors, as shown in Figure 2.4.

12

Shape description Texture description

Figure 2.4 ColorSHOT Feature Descriptor[16]

13

Chapter 3
Workspace Model and Object

Models

Before planning, the robot should identify the workspace boundary and segment the
scene to find object models in the workspace, as shown in Figure 3.1. An object database
is also generated online to keep the object’s geometry model, pose, and available action
to be applied to the object. The workspace and object model provide fundamental

information for later planning and runtime feedback in execution.

Boundary Detection

Workspace Model

RGB-D Point Cloud Scene
{)l:;ed Segmentation

I I I I I L & Object Geometry Model
b
Object Point Clouds b Object Manipulation Model

Object Model

Figure 3.1 Workspace Model and Object Models

3.1 Workspace Model

The workspace is where the robot interacts with objects and discovers the target.
Since the scenario in this thesis is searching target in limited workspace like cupboard,
shelf and fridge. We model the workspace as a cuboid divided into voxel grids, as shown

in Figure 3.2. The size of the voxel is adjustable to tradeoff between the precision and the
14

computational cost. In this thesis, the voxel’s dimensions are 1cm x 1cm x 1cm, and it is
the unit of the workspace. Each voxel in the workspace is either unknown, empty or

occupied by an object.

)
:

h ?9&
L

YO N
e

alalalaly,

LV S
NN

U X

XX

e

X

‘W, max

yn',min xn'.min

Figure 3.2 Workspace and its dimension

To identify the dimensions of the workspace, there are a few approaches, and one of
them is to record the information in the global semantic map so that the robot knows the
exact location and dimension of the workspace. In this thesis, however, we assume that
initially the robot only knows the rough location of the workspace in the map and the
workspace lies within the robot view, so that local perception is required to have more
accurate dimension and location of the workspace for the sake of planning. We achieve
this by first identifying the upper, lower, left and right boundaries of the workspace with
depth gradient feature. Then, referring to Figure 3.2, we first move the robot to the front
of the workspace, being aligned with the midline of the workspace, and face the
workspace directly. This pose is the starting pose of the robot in our planner. Within the
side boundaries, we take the shallowest and deepest points as the shallower and deeper
boundaries of the workspace. As a result, the whole workspace can be regarded as a

cuboid whose three sides are aligned with the three axes in the global coordinate frame.

In the sequel, we denote the left and right bounds as (ywvmax, Yo min) the upper and lower

15

bounds as (2, e, Zy,min) and deeper and shallower bounds as (X, pay X min) -

w,max ! “w,min 'w,max ! “*w,min

3.2 Object Geometry Model

After removing all the boundary points of the workspace, the rest point cloud are

objects inside the workspace. We segment each object with Euclidean clustering approach
to obtain each object point cloud P={p,p,,..,p,} . where p,p,,...p, R’ are

points of the point cloud. Since the object is assumed to be convex, we calculate the
convex hull of the point cloud P and compose the object’s geometry model with voxels
whose center is inside the hull. The geometry model is thus a voxel cloud V . The
occluded part of the object may not be modeled correctly. However, during planning, the
robot moves to different positions and view the object from different perspectives. At that

time, the robot is able to update the object model and re-plan if necessary.
3.2.1 Geometric Primitive Model-based Object Modeling

For objects which can be fitted well with a primitive geometry model, we can apply
Random Sample Consensus (RANSAC) on the point cloud to get a precise object
geometry model with model-based approach. Though we don’t know which model suits
the object beforehand, we can still fit the object with predefined model and check its
similarity to the model. Only fittings with high similarity are applied.

One geometry model is the cylinder model. Here, we focus on cylinder vertical to
the horizontal plane. Since cylindrical objects like bottles, cans, and cups are common in

daily life, it is the top choice of geometry model. The cylinder model is expressed as:
Cylinder = {PC eR|ld (R L)-1]< g} (3.1)
where P, are points that fit the cylinder model, LeR® is the central axis of the

cylinder, r isthe radius,and ¢ isthe error tolerance of the model. To test if the model

16

well describes the object’s geometry, we find the root-mean-square error of radius r to

the distance of every point in the object point cloud P to the central axis L:

n

>(d(P.L)-r)

E_ =12 (3.2)

rms
n

if E, . is lower than certain threshold, which is determined by the magnitude of the

sensor’s random error, the object is modeled as cylinder. Voxels that are inside the
cylinder form the object model voxel cloud V . Modeling a cylindrical object as cylinder
has more advantages than getting a precise model, and one of them is that the object has
only one pose, which reduces the computational cost in deriving its manipulation model.

Besides cylinder model, we also fit object clouds with cuboid model. We first extract
the plane which is parallel to z axis and contains the most points from the object cloud,
called major side plane. Second, we iteratively extract planes from the object cloud.
Finally, we calculate the proportion of the points that belong to the planes vertical or
parallel to the major side plane to score the similarity of the object cloud to a cuboid. The
cuboid model is the object cloud bounding cuboid in the orientation determined by the
normal vector of the major side plane.

According to the object’s size, we divide the objects into 2 categories: small and
large. If the robot gripper can completely surround the object, the object is small,
otherwise, it is considered large. By checking the radius of the minimum bounding circle
of the object’s projection to the XY plane, we can classify the objects as small or large
ones. The reasons to classify objects by its size lie in the difference in manipulation

models of the two kinds, which will be discussed it in section 3.5.
3.3 Object Pose Model

In this section, we give a brief introduction about how an object’s pose is described

17

in this thesis. As stated in Chapter 1, we assume that all objects are standing on a

horizontal plane. Therefore, the object’s pose is special Euclidean group SE(2), which

contains the object’s position (x,,y,) on the table, and the orientation 6, rotating

against the z axis. Since the workspace is discretized to be voxel grids, the position

(%,,Y,) is mapped to the voxel in the bottom layer of the workspace. For object without
geometric primitive model, (x,,y,) are the x and y component of the Euclidean
mean of the voxels in the geometry model. For cylindrical objects, (x,,y,) are the x

and y component of the centroid of the cylinder model.

Since there is little difference for planning and manipulation in slight orientation
change, the object orientation unit is set to be 5 degrees in this thesis. The initial
orientation of the object first observed by the robot is set as 0. For cylindrical objects,
there is no or little difference in different orientations, so we let the orientation be always

0.

3.4 Object Manipulation Model

In this section, we discuss how objects are manipulated by the robot and how objects
are influenced by the manipulation. The object manipulation model models the effect of
manipulation based on the manipulation type and the object pose relative to the gripper
with absence of obstacles. There are three types of manipulation defined in this thesis,
which are “grasp,” “place” and “push-aside.”

3.4.1 Grasp Manipulation
First manipulation is “grasp”. We limit the grasp direction to horizontal direction, as
shown in Figure 3.3, so we can define a grasp as:
GRASP ={0,.,, p, } (3.3)

18

where 6, (0" <6, <360°) means the initial object orientation relative to the gripper,

init
which can also be regarded as the arm’s approach direction to the object, and
P, =(xg,yg,zg)eR3 is the grasp point expressed in object coordinate. For non-
cylindrical objects, the object’s orientation may vary after manipulation. This effect will

be discussed in detail in section 3.5.1. We assume the grasp point does not change and it

serves as rotation center when grasping. The final object orientation is determined by

GRASP and is denoted as 6, (GRASP). If the object’s width in final pose &, is

below the minimum or above the maximum spread of the gripper, the object cannot be

grasped from &, . As a result, we can filter all GRASP with the above criterion and
get a set of feasible GRASP, denoted as GRASP; . We define object grasp model (GM)
to describe the effect of each feasible GRASP to the object:

GM (GRASP,) = {0y, | (3.4)

a4

Figu 3. rasp mailation
3.4.2 Place Manipulation

The object grasped will be released and placed somewhere in the workspace. A place
manipulation is defined as:

PLACE ={0, p,} (3.5)

where & is the relative pose of the object to the gripper, which equals the final relative

pose &, in GM, and p, is the place position with respect to the object centroid,

fin

19

which is the same as the grasp position p, . The object place model (PM') is therefore
the object pose relative to the gripper:

PM (PLACE) = {(Xgq. Y. 0)} (3.6)

3.4.3 Push-aside Manipulation

For a large object, it may be placed at a position where it is not prehensile from all
available directions. Therefore, we design push-aside manipulations for the robot to move
large objects by pushing it aside, as shown in Figure 3.4. A push-aside manipulation can
be modeled as a three degrees-of-freedom (DOF) movement of a pushing plane. In ARIO
robot, the arm pushing trajectory is fixed to an arc, so the DOF is reduced to 1. Therefore,

in this thesis, we define a push-aside manipulation as:

PUSH _ ASIDE = {(Xyt Yini: €

it): DIR} 3.7)
where (X, Yine: @i) 18 the initial pose of the object relative to the gripper, and DIR

is the push direction, either clockwise or counterclockwise. Unlike grasp manipulation,
push-aside manipulation can be applied to an object in every orientation, so all push-aside

manipulations are feasible. The object push-aside model (PaM) is:

PaM (PUSH _ ASIDE) = {(Xgq. Y, O3)| (3.8)

where (xﬁn, yﬁn,eﬁn) is the final pose of the object in the gripper coordinate. The pose

change effect of the push manipulation is detailed in section 3.5.2.
From the manipulation model, we get a mapping from initial pose to final pose in
gripper coordinate. Thus, the object movement in the global coordinate frame can be

determined if we know the gripper motion in that coordinate.

20

Figure 3.4 Push-aside manipulation

3.5 Object Pose Prediction after Manipulation

For non-cylindrical objects, object pose may change after manipulation. To plan
actions to search for the target object, the robot should know how objects’ pose changes
in each manipulation beforehand. In the following section, we discussed how we predict
the pose variation effect caused by “grasp” and “push-aside”, respectively.

3.5.1 Grasp Manipulation

The pose variation in grasp manipulation is a gripper dependent. The shape and the
closing motion of the gripper is crucial in predicting the final pose after manipulation.
Figure 3.5(a) shows the gripper of ARIO. The gripper area, marked as the green
rectangular area in Figure 3.5(a), is the area to contain the object in the gripper. Inside the
gripper, we define gripper coordinate frame centered at the center of the gripper area, as
shown in Figure 3.5(a). We assume that the object pure rotates against the gripper center
during grasping. When grasping small objects, the gripper moves to align its center to the
object center at the grasp height, as shown in Figure 3.5(b). Whereas in grasping large
objects, the gripper may not be possible to align its center to the object center at the grasp
height, so the gripper will try it best to fit the object into it, as shown in Figure 3.5(c). If
a large object cannot fit into the gripper to occupy more than half of the gripper area in
certain relative pose to the gripper, the approach direction is considered invalid.

In order to predict the object rotation, we first find the contact point first touched by
21

the gripper in current relative object pose to the gripper. If the contact point is in first or
third quadrant of the gripper coordinate, the object rotates clockwise, as shown in Figure
3.5(c). If the contact point is in second or fourth quadrant of the gripper coordinate, the
object rotates counterclockwise, as shown in Figure 3.5(b). If there are multiple contact
points in neighboring quadrants, the object reaches its final pose. In conclusion, by
following the above procedures, we can derive the final relative object pose given an

initial relative object pose to the gripper and a grasp height.

(b)
Figure 3.5 Grasp model

3.5.2 Push-aside Manipulation

Similar to grasp manipulation, the pose variation relative to the gripper in a push-
aside manipulation is assumed to be a pure rotation against the object center of mass,
which is also the object geometric center as we assumed. In push-aside manipulation, we
also divides the object into 4 quadrant, as shown in Figure 3.6. The x axis of push-aside

coordinate frame is parallel to the arm, and y axis is vertical to it. If the contact point is

in first or third quadrant, the object rotates clockwise. If the contact is at second or forth
quadrant, the object rotates counterclockwise. If there are multiple contact points in two
quadrants of the same side, the object reaches final relative pose to the arm. To ensure the
object converges to final relative pose after pushing, we let the robot push each object for
at least 10 degrees.

In order to prevent the object sliding toward +X direction in the push-aside

22

coordinate frame and escaping from the push-aside manipulation, we equip the gripper
with a pair of blocking plate to confine the object, as shown in Figure 3.6. As a result, the
global motion of the object in push-aside manipulation is thus considered as a
combination of pure translation along the arm’s circular trajectory and a pure rotation

against the object center.

Blocking Plate

Figure 3.6 Push-aside model

23

Chapter 4
Planning and Sensor Feedback in

Execution

4.1 Robot Pose Sampling

In the planner, the robot can change its pose to gain better view of the workspace

and manipulate objects from different directions. To reduce the computational cost of the

planner, we identify a few positions (x,,y,) in front of the workspace as the robot pose

candidates, referring to Figure 4.1, which are expressed as follows:

i Nr +l—i H i:].,...,Nr (41)
.= yw,min + yw,max
" N, +1 N, +1

where N, is the total number of robot pose candidates, and d,, is a fixed distance

between the robot and the shallower bound of the workspace, which is determined by the
robot arm’s workspace and also the view angle of the camera. Note that the robot

orientation is determined by the position to make the robot face the objects, i.e.

6 — tan* (y__y] “2)
' X, =X,

where (x_oy_o) is the Euclidean mean of all visible object’s positions in the beginning

of planning. Finally, all robot pose candidates can be expressed as a set:

POSE, =/ p,

P, =(xri,yri,6’ri), izl,...,Nr} (4.3)
24

>~ Yool
o
o ©
Workspace
P (o)
d,

(Xu'_.min - d“'r > ¥ . max)J ‘ ‘ (X ymin d“_’. > Y . min)

1 — 1 .
J/h'. max J w,rmn

N +1 T Snmblefl Robot Poses ' X

.(0, 0) y
Figure 4.1 Robot pose candidates (N, =3)

4.2 Search Planning

At the beginning of planning, the robot first locates possible poses of the target in
the occluded part of the workspace. With the aforementioned workspace and object
models, the robot knows the workspace boundaries and the way to interact with each
object. With such prior knowledge, the robot plans the search actions to find the target
object. That is, given the proposed planner, the robot finally generates a plan which
contains a series of these search actions.

4.2.1 Actions in Search Planning

There are three types of action: “Platform Move”, “Grasp and Place” and “Push-
aside”. First, “Platform Move” means that the robot moves to some predefined robot pose
candidates to observe the workspace in different direction. Second, “Grasp and Place” is
that the robot grasps an object, observes the workspace when the manipulated object is
temporally removed from workspace, and places it in new object pose. Third, during
“Push-aside” action, the robot pushes a large object to a new object pose and then

observes the workspace.

25

These three types of actions differ not only in the robot motion, but also in the
observation of the workspace. The “Grasp and Place” action has advantage over other
two actions in observing the workspace with one object being removed. Further, the
“Platform Move” allows the robot to change its viewpoint, and the effect is like moving
several objects’ positions relative to the robot in one action. Finally, the “Push-aside”
action makes large objects easier to be manipulated by the robot, and find the target
quicker.

Table 4-1 Comparison of action types

Action Type Observation Advantage Disadvantage
Observe the workspace | Under the risk of
with one object removed | manipulation
from it error

Observe from different | Hard to find all
Platform Move | After movement | position without touching | occluded target
the objects poses

Need much free
space for the robot
to sweep over

Between grasping

Grasp and Place and placement

Move ungraspable large

Push-aside After pushing object

4.2.2 RGB-D Camera Perception Model

The sensor used in this thesis for planning is an RGB-D camera mounted on the head
of the robot. The perception model for RGB-D camera is pinhole camera model. We can
project every voxel in the workspace to the image plane, which is a 480 by 640 matrix,
with the pinhole model. After object modeling, the voxels occupied by objects are marked
as each object category, as shown in Figure 4.2. If a voxel and an occupied voxel are
projected to the same pixel and the voxel is farther than the occupied voxel, then the voxel
is blocked by an object, so it is marked as “unknown.” The rest of the voxels are empty

voxels, as shown in Figure 4.2.

26

Unknown Voxels

Support Plane

Voxels ;céupicd by E)bjccls
(a) RGB-D point cloud scene (b) Objects and unknown voxels

Figure 4.2 Objects and unknown voxels

4.2.3 Hidden Target and Reveal Condition

The geometry of the target is assumed to be known before planning. We can easily
get the object model of the hidden target. To find possible pose of the hidden target, we

check if the target geometry model occupies only unknown voxels at each pose (x,y,8).

If so, the pose is a possible hidden pose. We denote the set of possible hidden target pose
as HT and the number of possible hidden target pose as N; .

The reveal condition specifies how the object is considered as revealed. It may vary
with different positions and altitudes of the camera relative to the workspace. In our cases,
the robot arm and workspace are lower than the camera. Therefore, we define the reveal
condition as follows: A possible hidden target pose is revealed if one of the voxels of its
geometry model that is higher than the half height of the target object is observed by the
camera. Note that the revealing of a possible hidden object pose is an irreversible event.
In other words, a possible hidden target pose which is revealed is permanently revealed.
To track the condition of each possible hidden target pose, we define the “reveal state”

(RVS) as:

ht, e HT,i=1.., N, rvs(hti)={

RVS = {rvs(hti) 0 ,otherwise

1 ,if htisrevealed
(4.4)

27

4.2.4 Object Accessibility in Search Planning

Obiject accessibility describes whether each object can be manipulated by the robot
at each robot pose candidate. The accessibility condition of an object for a robot pose is
one of the three: out of robot arm’s workspace, in workspace but blocked by obstacles, or

manipulable. We can encode the accessibility as:

-1 ,object j isout of workspace at robot pose i
a; =1 0 ,object j isin workspace but blocked by obstacles at robot posei (4.5)
1 ,object j is manipulable at robot pose i

The obstacles include other objects, possible hidden target, and the workspace
boundaries except the frontal frame at the shallower bound. We check collision not only
between the robot arm and obstacles, but also the manipulated object and obstacles. By
identifying the accessibility of all the objects, the planner knows all the manipulation
choice it has at the current state. The “object accessibility state” for search planning can

be defined as:

ACS, (POSE,,RVS) ={a,;fi=1,..,N,, j=1..,N,} (4.6)

where N, and N, are numbers of robot pose candidates and visible objects,

respectively. The accessibility state is determined by the poses of the objects, reveal state
of the hidden target, the location of all robot pose candidates, workspace boundaries and

the robot arm kinematics. Since the latter three are invariant during planning, the object
accessibility state is a function of the set of all object poses, denoted as POSE_, and the
reveal state.
4.2.5 Graph in Search Planning

The search planning is regarded as path finding problem in a directed graph. The

node of the graph is a state in the planner which is the combination of the current robot

28

pose, object poses, and the reveal state of the hidden target, as shown in the following

expression:

Node:{pn,POSEO,RVS D e POSEr} (4.7)

i
A node is connected to its parent node with an edge which represents a feasible action.

With an arbitrary node, denoted as Node, , and a feasible action in Node, , denoted as
A, we can define an edge from Node, : Edge(Node,, A). By changing the definition

of the cost function associated with the edge, we can change the behavior of the planner.
In this thesis, we adopt the definition from [7] to minimize the expected time to reveal

the target. The edge cost function is defined as:

f, (Edge(Node,, A)) - (AN), (T

(Nodey,Node,)
N HT

+TA) (4.8)

where (An,;), is the number of possible target poses revealed due to action A, and
T, is the time required for the action. Node, is the initial node of the planner, and

T node, nove,) 1S the time required from the initial node to the node Node, .

4.2.6 A* Object Search Planning

As stated in section 2.2, A* planning can find the optimal path with minimum edge
cost sum to travel from the initial node to the goal node in the graph by estimating the
future cost of nodes to the goal node with admissible heuristics. Therefore, before
planning, we should define the initial node, the goal node, the past cost of each node, and
the estimation of future cost.

As shown in (4.7), a node contains the information of robot pose, object poses, and
reveal state. The initial node is simply the state before the robot starts planning. In the

initial node, the robot pose is (0,0,0) in global coordinates, objects are untouched and

29

all possible hidden target poses are not revealed. The goal node of the planning is the

node that all possible hidden target poses are revealed. With a path from the initial node

to an arbitrary node Node, , we have the past cost of Node, and is able to estimate the

future cost of Node, . The past cost of each node is the sum of edge costs from initial

node to the node:
k-1

f,=> f,(Edge(Node,A)), A ~ A_, :CurrentPlan (4.9)

t=

As for the future cost, [7] estimated the future cost of an arbitrary node Node, as:

n ,Node,
ffsz(H’:IN](T(Nodel,wodek)”kmm) (4.10)
HT

where ny; o 1 the number of remaining hidden target poses and T means the

A,min
minimum time required among all feasible actions in Node, . The estimation expects all

the remaining hidden target poses to be revealed with single action which takes the
minimum time in all feasible actions of the current node. This optimistic estimation surely
underestimates the future cost and is admissible. We call this future cost estimation as

“single-action future cost estimation”, denoted as f, . Figure 4.3(a) shows the

-
illustration of the past cost and single-action future cost estimation. The area of the bars
represents the expected time to reveal the target. We also draws the true optimal plan with
blue dashed line.

The performance of A* algorithm relies on the future cost estimation. If the
estimated future cost is closer to the real future cost, the nodes that are considered will be
fewer which then results in shorter search time. The exact future cost of each node is the
expected time to reveal all hidden target poses from the node. If we assume that the robot

can observe the workspace from all robot pose candidates at the same time, the objects

30

can be removed from the workspace without placing them back, and all objects are always
accessible, and then the optimal plan is to always remove the object which occludes the
most hidden target poses. This greedy plan, which simply ignores all constraints to choose
an action, surely underestimates the expected time to reveal all target poses. We call this

estimation as “greedy future cost estimation” and is defined as:

Node;, n -n
HT ,Node;_; HT ,Node,
ffg - Z [N](T(Nodel,Nodek) + T(Nodek ,Node},)) (4 ll)
HT

Node; =Nodej
where Node;, is the goal node in the greedy planner, and Node, , ~ Node; are
generated with the greedy planner under the above assumptions. The idea of greedy future
cost estimation is shown in Figure 4.3(b). From Figure 4.3, we can conclude that if

T

(Nodej o) 9€Nerated from greedy planner is longer than T

in (4.10), then f, is

A,min
guaranteed to be higher than f. However, whether this condition holds depends on the

manipulator speed and platform mobility of the robot. If there are still many hidden target
poses not revealed yet, f, is more likely to be higher than f because the robot is
more likely to manipulate objects multiple times to reveal all the target poses. If it has
been long from the initial node to the current node, the future cost is dominant by the

Tinode,noce,) 1M and these two estimation will not differ a lot. Furthermore, the time to

calculate f, is much shorter than the time for f, . Therefore, it is hard to tell which

estimation is universally better. In this thesis, we choose the higher one as the final future

cost estimation:

f, =max(fy, f,) (4.12)

31

A E [N Ce Future Cost |
Pastd i . Estimation |
| i T[',\'mk'_’: Noce})
r{_min | (Nodes Nodey)
T =
I-['.\'r:.rikg- .[;':dej) ! ll“[Nade, Node; |
]
[r Nodey ,Node, | ?[r Node, ,Node,)
0% Percentage of revealed target 100% - 0% Percentage of revealed target 100%
Node, Node, Node, Node, Node, Node, Node, Node;
(@) Single-action future cost estimation (b) Greedy future cost estimation

Figure 4.3 Comparisons of f, and f,

4.2.7 Action Sampling in Search Planning

The workspace is divided into voxel grid with 1 cm resolution. For a normal size
workspace, there are about 1000~3000 grid position to place an object; furthermore, if
the object is non-cylindrical, the total poses will be over 200 thousands in worst case.
Though in the implementation, the possible placement poses are much fewer (around
100~200) due to the object’s size, object accessibility constraints and the robot arm
workspace, the number is still too great to make the problem solvable for a computer on
a mobile robot. With such high branching factor, constructing the graph is a great burden
for the computer, not to mention the planning. However, among these possible placement
poses, many of them are similar to other object poses and make little difference in later
planning. For example, in Figure 4.4(a), the right cuboid is manipulated to reveal the
occluded space behind it, and three of the possible new poses of the cuboid are shown in
blue in Figure 4.4(b). However, both three placement poses share same current
information gain and same object accessibility, which makes them similar in later
planning. This makes the planner check many redundant paths in the graph and waste a

huge amount of time. Therefore, it is important to reduce the branching factor to make

32

the problem solvable in some extent. There are three types of action available for every
node: “Platform Move”, “Grasp and Place” an object and “Push-aside” an object. We

reduce the number of last two actions.

(a) The original object pose (b) Redundant placement poses

Figure 4.4 Redundant actions

In “Grasp and Place” an object, the workspace is observed when the manipulated
object is being held in gripper. Therefore, the information gain due to the action is
irrelevant to the object placement pose. The placement poses actually affect object
accessibility in child nodes and the information gain of later actions, so we classify all
child nodes caused by “Grasp and Place” the object by their object accessibility state
ACS, . Among each class, we choose one node as the representative. The representative
node is the node that the manipulated object occludes minimum number of hidden target
poses observed from all robot poses. If there is a draw, choose one with largest X, .

In “Push-aside” action, the information gain is dependent on the pose of the objects
being pushed. Therefore, we classify the “Push-aside” action by both the information gain
and object accessibility state. As the “Grasp and Place” action, the child node with

minimum number of hidden target poses observed from all robot poses is chosen as child

states.
4.3 Grasp Planning

After the target object is revealed in an observation, as described in section 4.4.1, we
33

can estimate the target’s pose with the method described in section 4.4.2. The robot
successfully locates the target object’s pose and the end of object search is reached.
Nevertheless, the search is not considered as the end of a general robot task. In fact, the
robot should further hold the target object in hand, so that it can deliver the object to its
master. In many cases, the target object is seen by the robot, but still inaccessible. Thus,
we need a planner for grasping the target object.
4.3.1 Object Accessibility in Grasp Planning

The object accessibility in grasp planning, different from the one in search planning,
does not consider the reveal state anymore because the target is already discovered. We
express the object accessibility state in grasp planning as:

ACS, (POSE,)={a;fi=1...N,, j=1..,N,} (4.13)

where N, is still the number of robot pose candidates and N, is the number of visible

objects. Note that the target is one of the visible objects now, and hence N, should be
increased by 1.
4.3.2 Graph in Grasp Planning

The nodes of the graph in grasp planning are similar to those in search planning. The

node of the graph in grasp planning is defined as:

Node={(x,.Y,.6,), POSE,

(¥,1¥,,6,) € POSE, | (4.14)

where the nodes are still connected by the edge of the three types of actions. However,
the definition of edge cost function is different from that in search planning. In grasp
planning, the robot plans for an action sequence that minimizes the time required to grasp
the object. Therefore, the edge cost function is simply the time required to perform the

action:

34

f,(Edge(Node,, A))=T, (4.15)
4.3.3 A* Object Grasp Planning

In planning, the past cost is the sum of edge costs from the start node, which is the
total time spent from the start node. The definition of the past cost function is the same
as (4.9) with the edge cost defined in (4.15).

The robot grasps the target object from robot pose candidates. At each robot pose
candidate, we select the approach motion of the robot arm to reach the target with

minimum number N, of objects that block access to the target from the robot pose p,

(pri € POSEr). The approach motion of the arm from each robot pose to the target is

fixed in the entire planning. Suppose the robot is at p, in arbitrary node Node, . We

can estimate the future cost of Node, as:

f, = mln({(Nbi +1)'TMani,min +TM0V,(prl,p,k)|| =1.., Nr}) (4.16)
where T, mn 1S the minimum time required to manipulate an object, including “Grasp
and Place” and “Push-aside™ actions, and T (0] is the time to move from current

OV P + Py
robot pose p, to p,.Given the current node Node,, ((Nb_ +1).TMani min T Ty (b0
i ' ' Vi P+ P

means the minimum time required to grasp the target from the robot pose p,, including
the time for the robot to moveto p, from p, ,to manipulate N, blocking objects and

to grasp the target. Since the time required for each manipulation is underestimated, the
future cost estimation is admissible. Figure 4.5 shows the future cost estimation in one
exemplar node. The approach motion of the gripper in Figure 4.5 is a linear motion from
the robot to target and is marked with blue arrow and surrounded by a rectangle

representing the collision-free area of the gripper to grasp the target.
35

TapgetObjcct ‘ Minimum time to grasp the target from p.:

/ 1

=27, +1

Py »min Meni, min Mov(p, .p,)

Minimum time to grasp the target from p, :

Tp,z min 2: r\!aur.min
Minimum time to grasp the target from p, :
\| 1r:uf_,‘.]uin =3 rlfmrf'_mju + r'lfo\'.[pﬁ)

Future cost:

/ [,'I f; = min (Tp;,_ ,min * Tp;: ,1min * Tpig nin)
/ p " ,' p o '_ p n I
® / ® | | e

N "(;.Cum-:nt.Robo'tPosl‘c)- o
Figure 4.5 Future cost estimation in grasp planning
The start node of grasp planning inherits from the node of search planning when

discovering the target. The robot pose is the same, but the object poses require a

modification to include the target object pose into POSE_, as mentioned in section 4.3.2.

Moreover, if the robot discovers the target with “Grasp and Place” action, the robot enters
the grasp planning stage with an object in its gripper. In this case, since the robot already
grasped the object, the only feasible set of actions for the start node is “Grasp and Place”
the object in gripper. The robot uses the same set of actions as in search planning:
“Platform Move”, “Grasp and Place” and “Push-aside” to clear a path to grasp the target.
The goal node in grasp planning is that the robot grasp the target.

4.3.4 Action Sampling in Grasp Planning

In grasp planning, we also sample object poses to reduce the branching factor of the
graph. We classify the manipulation actions of each object in the way the same as in the

search planning with the object accessibility state ACS;. The only difference relies on

the criterion to choose representative actions from each class. The robot should move
obstacles outside arm approaching trajectory to the target. However, the robot does not

know which trajectory will be used before the end of the planning and the space outside
36

all trajectories may not be enough to place all the objects. Therefore, sometimes the robot
has no choice but to place the object to block one or some of the trajectories.

We sample the placement position by choosing the object pose that blocks minimum
number of trajectories. If there are multiple combinations of blocked trajectories with the
same number, the robot sample one object pose of each blocking combination. If there is
multiple choices of object poses in each blocking combination, select the one whose
average distance to those unblocked trajectories is the highest. The distance between an
object pose and a trajectory is defined as the minimum distance between the voxels of the
object and the trajectory. By doing this, the robot reduces the number of blocked
trajectories caused by the manipulation to minimum value, and also considers different
approach direction. In Figure 4.6, the robot manipulate the elliptic cylinder to new poses
to access the target. The poses shown in yellow blocks one approach trajectories, and the

pose shown in blue does not block any trajectory. Therefore, the robot will manipulate

Tay ie&ib‘;%ccl
LI

the object to the blue pose.

/ /| \ \
/] \ \
/P L) [P e i A P n

- '-'"('Clllré;ltRébbtPogéj- -
Figure 4.6 Action sampling in grasp planning

37

4.4 Sensor Feedback in Execution

4.4.1 Object Registration

We register object point clouds when they are obtained from different camera’s
viewpoints with the feature matching approach. The feature points are extracted with 5D

Harris Corner detector and encoded with ColorSHOT feature vector. Suppose we have a
source object point cloud, CLOUD,, from observation, and we would like to find its
feature point matching to a target object cloud, CLOUD,, whose object category is
known and stored in the database. We map each point in CLOUD, to a point in

CLOUD, that is nearest to the pointin CLOUD, in ColorSHOT feature space, and vice

versa. Only point pair that are mutually mapped to each other is taken as a successful
matched feature point. Suppose there are N matched feature points, and we can

compute their dissimilarity in feature space, namely, D (CLOUD,,CLOUD,), between

(CLOUD,,CLOUD,) as:

D, (CLOUD,,CLOUD,) =(MJ (4.17)

d , : .
where (WJ means the average distance between matched feature point

pairs in ColorSHOT feature space.

Registering objects equals to finding correspondence or mapping of objects in
current scene to those in database. The database is constructed at the time when the robot
first observes the workspace, and it contains all the object clouds of each object categories
including the target object, as shown in Figure 4.7. Later observations add more object

point clouds in each object category from different view angles based on the registration

38

result. The object point cloud database is divided into N, visible objects and the hidden

target object OBJ,,:
Database = {OBJ,,0BJ, ..., OBJ, ,0BJ, | (4.18)
Further, each object category (OBJ) is composed of K, object point clouds:

OBJ, ={CLOUD,,CLOUD,,...,CLOUD, } (4.19)

Object Database

crouvn, B CLOUD, cLoup, B CLOUD,

Figure 4.7 Object database

Because the object position during each registration is known, position cue is also

included to help registration. The dissimilarity between an observation, CLOUD,, and

an object, OBJ,, is defined as:

K

D(CLOUD,,0BJ,) = 4-d, (CLOUDS,OBJi)JrKiZ D (CLOUD,,CLOUD,) (4.20)
it

where d. (CLOUD,,CLOUD,) represents the Euclidean distance between the centroids
of two object clouds, and A is a weighting factor to balance these two measures. We
map new observations to the known object categories in the database. The observation-
category mapping M (CLOUD — OBJ) is a one-to-one mapping and also a hypothesis
of the categories of each observed object. To find the best hypothesis, we can define a
cost function of each mapping as:

39

f(M):ZS:D(CLOUDS,OBJi =M (CLOUD;)) (4.21)

=1
where S is the object number in this observation. The mapping with minimum cost is
the best correspondence and the final registration. If the target object in the database is
mapped by an observation after the registration, we conclude that the hidden target has

been revealed.
4.4.2 Object Pose Estimation
Object pose estimation is achieved by finding linear transformation of matched

feature point. Suppose we have a new object point cloud observation CLOUD, whose
pose is unknown, and an object point cloud CLOUD, of same object category in the

database with known pose. The matched feature points in CLOUD, and CLOUD, are
{ P Ps,ses P, } and { Py P reer Py } , respectively. The feature points can be expressed

as a matrix whose column is the points’ coordinate, and we get two matrices P, € R*"

and P e R*". The goal is to find the linear transformation (R,T) from P, to P.:

5 -

m:[ﬁ ﬂm 4.22)

The estimation is done by singular value decomposition (SVD) to obtain the least-

square solution of the linear transformation.
4.4.3 Grasp Action Sensor Feedback

When grasping the object, there exists some random error in the object’s position
relative to the gripper and cause misalignment of the object and gripper. The error is up
to a centimeter scale and may cause a fail grasp. We solve this problem by mounting an
eye-in-hand RGB-D camera on the wrist of the robot arm to adjust the robot arm’s final

motion. Since the object’s approximate position is known, we first filter out the
40

background with depth constraint. For example, the right bottle in Figure 4.8 is too deep
to be considered as target, and thus filtered. The object boundaries of an object can be
detected with great variation in depth, which is the depth gradient feature. The gripper’s
approach direction is then fixed to align with the mean position of the boundary, as shown
in Figure 4.8. The feedback also ensures the robot arm to extend the right length to prevent

knocking down the object or grasping the object too shallow.

Figure 4.8

4.4.4 Move Action Sensor Feedback

In executing the plan, the robot moves to different positions and needs to localize
itself before manipulating the object. One way is to localize the robot in each frame during
the process. However, this approach takes a lot of resource in computation. Since the
robot only moves in short distance (<50cm) between each action in the scenario, the wheel
odometry is still reliable as an initial guess of the robot’s position. Therefore, we only
localize the robot before arm manipulation to make sure the manipulation is executed in
the robot pose as planned. The robot pose is refined by matching views from last and
current pose with Iterative Closest Point (ICP) approach [17]. With the help of the initial
guess of the robot pose from the wheel odometry, the alignment is guaranteed to converge

to the local minima closest to the initial robot pose.

41

Chapter 5

Experiment Result

5.1 Experiment Setting

In the experiment, the robot is placed in front of a shelf. The dimension of the shelf
block is 55 centimeter in width, 35 centimeter in depth and 34 centimeter in height. The
bottom plane of the shelf is 93 centimeters above the ground. We set the number of robot

pose candidates (N,) as 3, and fixed distance of the robot to the workspace (d,,) as 635

mm. The time required for each action is determined by its action type. In the planner, the
time for “Platform Move” action is 45 seconds, the time for “Grasp and Place” action is

80 seconds, and the time for “Push-aside” action is 60 seconds.
5.2 Evaluation on Object Search Planning

We evaluate the performance of the object search planner by testing it on numbers
of scenes, as shown in Figure 5.1 and Table 5-1. In each scene, we randomly place the
object to test different conditions but do not change the object composition inside the
workspace. The objects are placed at least 3 cm apart to allow the robot to manipulate
them. Initially, the robot can see all the objects except for the target. Scene (a) and (b) are
composed with three PET bottles with different density. Scene (c) and (d) replace one of
the PET bottle in (a) and (b) with an object with irregular shape. Scene (e) and (f) both
contain four objects, and there are two objects with irregular shape in (f). Scene (g)
involves a large object which requires the robot to move the two PET bottles before

manipulating it. Scene (h) tests the robot’s ability to planning search and grasp in clutter.

42

Scene (i) is a general case containing small and large objects with various shapes.

@) ©

(i)
Figure 5.1 Front view and side view of the test scenes
43

Table 5-1 Details of the Test Scenes

Scene | Object Composition Description
(@) | 3 PET bottles The objects are placed loosely. (6cm~7cm apart)
(b) | 3 PET bottles The objects are placed tightly. (3cm~4cm apart)

© 1 irregular object
2 PET bottles
(d) 1 irregular object
2 PET bottles
1 irregular object
(e) | 2 PET bottles 4 objects which include 1 irregular object
1 small bottle
2 irregular objects
(M 2 PET bottles

1 large box
©@ | 2 PET bottles

The objects are placed loosely. (6cm~7cm apart)

The objects are placed tightly. (3cm~4cm apart)

4 objects which include 2 irregular objects

The box is too wide to be grasped in the front, so it
needs to be pushed-aside, but is blocked by the
bottles.

The objects in the rear row is blocked and also
stops the robot from placing object behind them.

(h) | 5PET bottles

1 large irregular object

(i) 1 irregular object Objects with different shape and size are placed
1 PET bottle together.
1 small bottle

Since this thesis hold different assumptions and plans a problem with much higher
complexity than the state-of-the-art object search planner [7-9], we do not evaluate the
proposed object search planner with these approach. Instead, we implemented two other
planners to prove the advantage of the proposed planner. The first planner for comparison
is the “greedy planner.” The greedy planner ignores long-term optimality and only
maximizes the number of revealed target at each step and takes the minimum time. In

other words, the greedy planner always maximizes the utility function at each step:

AnHT)
TA

L

. (5.1)

where (An,;), is the number of possible target poses which is revealed at the step by

A

taking action A, and T, is the required time. When the robot grasps an object, the

greedy planner always places the object to the pose with maximum x. The other planner

44

is the A* planner without action sampling. The A* planner will keep all possible child
nodes of each node and find an optimal path in the state graph to discover all the target
with minimum expected time.

We evaluate the planners by measuring their success rate to generate a plan, the
planning time, the expected time to find the target, and the branching factor of the state
graph. A planning is failed if the planning time is more than 10 minutes or the resulting
action sequence is composed with more than 20 actions. Higher success rate means that
the planner is more robust and reliable.

If the planning successes, we also measure its planning time, the branching factor of
the state graph and the expected time to find the target. Among these data, the planning
time is an important indicator to tell if the planner is practical, and is highly correlated
with the branching factor. The expected time to find the target indicates how well the
planner achieves its original goal.

The success rate of each planner is shown in Table 5-2. In simple case like (a), all
planners are capable of generating a feasible plan. However, when objects are placed
tighter, such as (b) and (d), the greedy planner sometimes fail to generate a plan because
the objects are blocking one another and may require the robot to move an object without
revealing any hidden target poses. In such situation, the greedy planner does not know
which action is better and is stuck in the local minima by taking random actions without
information gain. On the other hand, the A* planner fails when the optimal solution takes
many steps to complete. Therefore, A* planner fails in most complex scenes because the
time required to check every similar path in the state graph is too long, which shows the

value of action sampling.

45

Table 5-2 Success Rate of the Planners

Scene | Greedy Planner A* Planner Proposed Planner
(@) 10/10 10/10 10/10
(b) 8/10 10/10 10/10
(c) 10/10 7/10 10/10
(d) 6/10 0/10 10/10
(e) 4710 0/10 10/10
() 7110 0/10 9/10
(9) 3/10 3/10 8/10
(h) 0/10 0/10 8/10
(i) 0/10 2/10 8/10

The proposed planner, also known as A* planner with action sampling, is able to
find a plan in most scenes. The proposed planner survives in the scenes that fails the other
two planners. However, there are still some situations which the planner cannot handle.
Since the objects are randomly placed, sometimes none of the available manipulation
action makes certain object accessible. Further, since we follow a greedy criterion when
sampling child nodes with same object accessibility state, if an object is blocked by
multiple objects, it is possible that none of the action sequences remove all blocking
objects. In both case, if the hidden target poses blocked by this object cannot be seen by
moving the robot platform, the hidden target pose will never be revealed.

Figure 5.2(a) shows an example of failed scenes. The front row of the PET bottles
are graspable by the robot but the two PET bottles in the rear row block the path of the
arm to place the bottles to the deep workspace. Moreover, each of the two rear PET bottles
are blocked by two bottles, so no single action available to make them accessible.
Therefore, after grasping the front bottles and observing the workspace, the robot tends
to place them back to their original position to block minimum number of possible hidden
target poses, which cause the bottles in rear row never accessible. Figure 5.2(b) shows
another example of failed scenes. Though the robot can push large objects aside to move

objects which is not graspable, a push-aside action requires very wide free space for the
46

arm to perform it. In Figure 5.2(b), the large box is placed in the deep workspace and all

sampled placement poses of PET bottles may block the arm to push the large box.

(b)

Figure 5.2 Examples of failed scenes

The planning time and expected time to reveal the target is shown in Figure 5.3.
From scene (a), (b), (c) and (d), we can conclude that the expected time and planning time
are longer if the objects are place tighter. This result is reasonable since the tight formation
of the objects hinders the robot from revealing most hidden target poses by platform
movement and forces the robot to manipulate objects. As a result, the planning time is
highly correlated with the difficulty in manipulating the objects that occludes hidden
target poses. These objects are usually large or placed in deep of the workspace. Therefore,
the robot needs to plan many steps of action before manipulating the object. This effect
causes the dense and complex scene such as (f) and (h) requires more planning time.
However, in these scenes, most of the hidden target poses are revealed Dbefore
manipulating the final object to reveal the last few target poses occluded by this object.

Thus, the total expected time is not extremely high.

47

160 —_——

140 134.53

12686
120 116.68 |
107‘3 102.89 104 95
100 93.69
% 79.14 77.19
69.09
60 523
44.96 46.95
40
20.12
20
525 5.73 I
ol Cmll w
a b f

c d

Seconds

Scene
M Planning Time M Expected time to find the target

Figure 5.3 Planning time and expected time to find the target of the proposed planner

In scenes which greedy planner and the proposed planner both succeed in generating
a plan, the planning time and the expected time to find the target is shown in Figure 5.4.
Since the greedy planner only explore one path in the state graph, the planning time is
much less than the proposed planner. Nevertheless, the expected time in greedy planner
is longer than the expected time of proposed planner. The difference is not significant
because the greedy planner can always find actions with high utility in the beginning of
planning to reveal many possible hidden target poses, but struggles to reveal the target
poses that is occluded by objects in the deep of the workspace. Therefore, in the scene
where the greedy and the proposed planner both succeed, the difference in expected time
is mainly contributed by the objects in the deep workspace. Therefore, the difference in
expected time are longer in complex scenes than in simple scenes.

The A* planner is guaranteed to derive the optimal plan to search the target object.
However, it takes a lot of planning time to reveal all the hidden target poses. Figure 5.5

shows the planning time, average branching factor and expected time of the A* planner

48

and the proposed planner on the scene where they both succeed in generating a plan.
Although the expected time of A* planner is slightly shorter than the expected time of the
proposed algorithm, the A* planner takes much longer planning time. The high branching
factor of the A* planner is the main reason for its long planning time. Furthermore, the
massively growing states also drains out the runtime memory and in turn drags down the
computing speed. Therefore, the action sampling not only saves planning time but also
reduces the computing resource required for planning.

60

52.34
50
39.31
40
34 31.93
g 30
Q
A 20.12
20
0 101 384 T3
1.08 168 177 18 22
0 — — -
d
Scene
M Greedy Planner M Proposed Planner
(a) Planning time
140 130.05 129.67
120 o 116.68 10519 118-04 116.67
1 98.93 102.89
100 9.0 7562 94.61 |
w0 6909 76.08
=
g5 60
3
Y 40
20
o]
C e

Sccnc
H Greedy Planner ™ Proposed Planner

(b) Expected time to find the target
Figure 5.4 Comparison between greedy planner and proposed planner

49

330 330.58

306.18
300
250
207.03
200
£
g 150
2
wa
100
. 39.31 43.24
22.55
1.071.01 5.25 5.79 . .
0 — — —
a b c g i
Scene
B A* Planner B Proposed Planner
(a) Planning time
300
25333
250
, 17252 168.38
gm 133.24
& 100 83.59
50
11.71 Is.os 16.09 7.46 7.32
0 | -_— | — —
a b c g i
Scene
B A* Planner M Proposed Planner
(b) Average branching factor
140 116.67 117.76
116.67
120
93 48 110.
100 79.14 9198 |
2 69.09 79,14
g 80 69.09 ‘
&
A 60
40
20
0
a b o g i

Scene
m A* Planner B Proposed Planner

(c) Expected time to find the target
Figure 5.5 Comparison between the A* planner and the proposed planner

50

5.3 Evaluation on Object Grasp Planning

In this section, we evaluate the performance of the proposed object grasp planner.
Since the grasp planner aims to plan an action sequence after discovering the target object,
we evaluate the planner by adjusting the scene shown in Figure 5.1 to make the target
object visible at the first place and plan grasping. The test scenes is as shown in Figure

5.6, and we do not change the object poses in this evaluation.

(d)

(9)

Figure 5.6 Test scenes in evaluation on object grasp planning

We evaluate the proposed object grasp planner with the A* planner without action
sampling to test its planning time, time required to grasp the object, and its branching
factor. As in object search planning, a planning is failed if the planning time is more than

10 minutes or the resulting action sequence is composed with more than 20 actions.

51

The proposed planner successfully plans action in all test scenes, while the A*
planner failed to generate a plan in 10 minutes in scene (f), (h) and (i) because many
action steps are required to grasp the target. Figure 5.7 shows the performance of the
proposed planner under all scenes.

700
600

500

580
535
410 410
400
330
300 285 285
2 2
. 05 05 179,
125.
10 56.4) s I
13.8 .
. 1.1 62 1.1 27 - I -
a b C d e f g h i

Scene
M planning time B time required to grasp the target

Figure 5.7 Planning time and time required to grasp the target of the proposed planner

Seconds

o

o

Since the time required to grasp the target is highly correlated with the number of
obstacles, and the number of obstacles determines the number of actions taken, the trend
in planning time is consistent with the trend in time required to grasp the target. In (a),
(b), (c) and (d), the scenes that the objects are placed denser, (b) and (d), require the robot
to remove more obstacles to grasp the target than in looser scenes, (a) and (c). In (e) and
(F), there are more objects, including the objects with irregular shape, which is placed
densely and lengthens the planning time. The planner is still able to grasp the target in
complex scenes, such as (h) and (i), as long as there exists free space for the robot to grasp
objects and place it.

Figure 5.8 and Figure 5.9 shows the planning time and time required to grasp the
52

target of each scene which is successfully planned by both planners. The proposed planner
uses much less planning time to get a nearly-optimal solution compared to the optimal
solution of A* planner. In summary, the proposed planner performs better than A* planner
in simple cases, such as (a), (b), (c) and (d), for shorter planning time, and is more robust
and much faster in planning under the complex scenes, such as (e), (f), (g), (h) and (i).

250

23459
200
150
g
5
L:
100 95.56
64.06
50
258 5.55
3.85
119 6.04 .2.?6 l
a b [d e g
Scene
B A* Planner M Proposed Planner
Figure 5.8 Planning time
450
410410
400
350 330
300 285 285 285285 285
g 250
g 205 205 205 205
g 200
n
150
100
50
0
a b d e g

Scene
B A* Planner H Proposed Planner

Figure 5.9 Time required to grasp the target
53

5.4 Overall Test

The overall action of object searching and grasping is performed to show the
practical use of the proposed planner and system. Figure 5.10 and Figure 5.11 show one
of the case involving 3 cylindrical objects and an object with irregular shape. The robot
searches the target by arranging the position of objects and plans grasping after the target
is discovered. Figure 5.12 and Figure 5.13 show a scene which includes a large object.

As proposed, the robot is able to push large object aside and discover the target.

(@) The test scene (b) Workspace voxel grid of the scene
Figure 5.10 Overall test scene 1

= WeiDTE G = s I

‘Observe the scene.
The target is still hidden.

= s) .- us = .)T

Moves to pose candidate 1. Grasp Object 4.

—_—i

Observe the scene. Place Object 4 to the deep _
The target is found. right. Grasp Object 3.

54

rpigfte Ot & o e svelllo; Move to pose candidate 3. Grasp the target.

Figure 5.11 Action sequence in overall test scene 1

(@) The test scene (b) Workspace voxel grid of the scene
Figure 5.12 Overall test scene 2

~ Observe the scene.
The target is still hidden.

Observe the scene. Place Object 2 to the deep

The target is still hidden. right. Move to pose candidate 3.

55

Observe the scene.
The target is still hidden.

/

Observe the scene.
The target is found.

Observe the scene. |
The target is still hidden.

Grasp Object 1.

Place bbject 1 to the deep
left.

Direct grasp the target.
Figure 5.13 Action sequence in overall test scene 2

56

Chapter 6

Conclusion

In this thesis, we proposed the world’s first object search system based on both robot
manipulation and active visual search. By modeling the workspace and objects, the robot
plans an action sequence to retrieve the target object. We samples the possible child nodes
in the planner to simultaneously reduce the planning time and keep valuable choices for
next action. In the experiment, we compare our approach with a greedy planner and an
A* planner. The results show that the proposed approach is able to generate a plan in

reasonable planning time and is more robust than two other planners.
6.1 Future Works

The complexity in planning in limited workspace is extremely high and even a
feasible plan may not exist due to lack of space inside the workspace. In reality, the space
is usually limited, but there may be some space outside the shelf block for the robot to
put objects. Therefore, in future works, we would like to expand the limited workspace
to spaces outside the block. The robot may divide the space into separated slots to place
the objects. In this manner, we can incorporate the planner which allows the robot to
permanently remove objects from the workspace to reduce the planning complexity and
make the planner more practical and more flexible.

In our assumption, the objects are placed separately to let the robot manipulate them.
However, in real world, objects are often stacked together and difficult to be grasped with
the parallel plate gripper. Although [18] proposed a physical-based scheme to analyze the

effect of collision between the gripper and multiple obstacles to complete grasping in
57

clutter, object searching in clutter requires much more accuracy in object motion.
Therefore, we believe that the solution for object searching in clutter lies in minimizing
the collision in manipulation. A new gripper design for robot to manipulate object in

clutter is thus also a possible direction for future works.

58

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCE

Y. Ye and J. K. Tsotsos, "Sensor Planning for 3D Object Search,” CVIU, vol. 73,
pp. 145-168, 1999.

K. Sjo, D. Lopez, C. Paul, P. Jensfelt, and D. Kragic, "Object Search and
Localization for an Indoor Mobile Robot," Journal of Computing and Information
Technology, pp. 67-80, 2009.

A. Aydemir, M. Gobelbecker, A. Pronobis, K. Sjoo, and P. Jensfelt, "Plan-based
Object Search and Exploration Using Semantic Spatial Knowledge in the Real
World,” in Proceedings of the 5th European Conference on Mobile Robots
(ECMR'11), ed, 2011.

A. Aydemir, K. Sjoo, J. Folkesson, A. Pronobis, and P. Jensfelt, "Search in the real
world: Active visual object search based on spatial relations,” in 2011 IEEE
International Conference on Robotics and Automation (ICRA), 2011, pp. 2818-
2824,

J. Ma, T. H. Chung, and J. Burdick, "A probabilistic framework for object search
with 6-DOF pose estimation,” Int. J. Rob. Res., vol. 30, pp. 1209-1228, 2011.

L. L. S. Wong, L. P. Kaelbling, and T. Lozano-Perez, "Manipulation-based active
search for occluded objects,"” in 2013 IEEE International Conference on Robotics
and Automation (ICRA), 2013, pp. 2814-28109.

M. Dogar, M. Koval, A. Tallavajhula, and S. Srinivasa, "Object search by
manipulation,” in 2013 IEEE International Conference on Robotics and
Automation (ICRA), 2013, pp. 4973-4980.

M. Dogar, M. Koval, A. Tallavajhula, and S. Srinivasa, "Object search by
manipulation,” Autonomous Robots, vol. 36, pp. 153-167, 2014/01/01 2014.

M. Gupta, T. Ruhr, M. Beetz, and G. S. Sukhatme, "Interactive environment
exploration in clutter,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013, pp. 5265-5272.

R. B. Rusuand S. Cousins, 3D is here: Point Cloud Library (PCL)," in 2011 IEEE
International Conference on Robotics and Automation (ICRA), 2011, pp. 1-4.

P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, pp. 100-107, 1968.

M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, pp. 381-395, 1981.

C. Harris and M. Stephens, "A combined corner and edge detector,” in In Proc. of
Fourth Alvey Vision Conference, ed, 1988, pp. 147-151.

I. Sipiran and B. Bustos, "Harris 3D: a robust extension of the Harris operator for
interest point detection on 3D meshes," The Visual Computer, vol. 27, pp. 963-
976, 2011.

F. Tombari, S. Salti, and L. Di Stefano, "A combined texture-shape descriptor for
enhanced 3D feature matching," in 2011 18th IEEE International Conference on
Image Processing (ICIP), 2011, pp. 809-812.

S. Salti, F. Tombari, and L. Di Stefano, "SHOT: Unique signatures of histograms
for surface and texture description,” Computer Vision and Image Understanding,

59

vol. 125, pp. 251-264, 2014.
[17] P.J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 239-256,
1992.

[18] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, "Physics-Based Grasp

Planning Through Clutter,” in Proceedings of Robotics: Science and Systems, ed.
Sydney, Australia, 2012.

60

	誌謝
	中文摘要
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Problem Formulation
	1.3 Challenges
	1.4 Related Works
	1.5 Objectives
	1.6 Thesis Organization

	Chapter 2 Preliminaries
	2.1 System Overview
	2.1.1 Hardware System
	2.1.2 Software System

	2.2 A* Algorithm
	2.3 Random Sample Consensus (RANSAC)
	2.4 Object Feature Detector & Descriptor
	2.4.1 5D Harris Corner Detector
	2.4.2 ColorSHOT Descriptor

	Chapter 3 Workspace Model and Object Models
	3.1 Workspace Model
	3.2 Object Geometry Model
	3.2.1 Geometric Primitive Model-based Object Modeling

	3.3 Object Pose Model
	3.4 Object Manipulation Model
	3.4.1 Grasp Manipulation
	3.4.2 Place Manipulation
	3.4.3 Push-aside Manipulation

	3.5 Object Pose Prediction after Manipulation
	3.5.1 Grasp Manipulation
	3.5.2 Push-aside Manipulation

	Chapter 4 Planning and Sensor Feedback in Execution
	4.1 Robot Pose Sampling
	4.2 Search Planning
	4.2.1 Actions in Search Planning
	4.2.2 RGB-D Camera Perception Model
	4.2.3 Hidden Target and Reveal Condition
	4.2.4 Object Accessibility in Search Planning
	4.2.5 Graph in Search Planning
	4.2.6 A* Object Search Planning
	4.2.7 Action Sampling in Search Planning

	4.3 Grasp Planning
	4.3.1 Object Accessibility in Grasp Planning
	4.3.2 Graph in Grasp Planning
	4.3.3 A* Object Grasp Planning
	4.3.4 Action Sampling in Grasp Planning

	4.4 Sensor Feedback in Execution
	4.4.1 Object Registration
	4.4.2 Object Pose Estimation
	4.4.3 Grasp Action Sensor Feedback
	4.4.4 Move Action Sensor Feedback

	Chapter 5 Experiment Result
	5.1 Experiment Setting
	5.2 Evaluation on Object Search Planning
	5.3 Evaluation on Object Grasp Planning
	5.4 Overall Test

	Chapter 6 Conclusion
	6.1 Future Works

	REFERENCE

