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Abstract

Polynomial Chaos Expansions (PCE) are a powerful metamodelling tool that has important

applications in many engineering and applied mathematics fields. These include structural

reliability, sensitivity analysis, Monte Carlo simulation and others. Due to the underlying

complexity of its formulation, however, this technique has seen relatively little use outside of

these fields.

UQLAB metamodelling tools provide an efficient, flexible and easy to use PCE module that

allows one to apply state-of-the-art algorithms for non-intrusive, sparse and adaptive PCE on

a variety of applications. This manual for the polynomial chaos expansion metamodelling

module is divided into three parts:

• A short introduction to the main concepts and techniques behind PCE, with a selection

of references to the relevant literature;

• A detailed example-based guide, with the explanation of most of the available options

and methods;

• A comprehensive reference list detailing all the available functionalities in UQLAB.

Keywords: UQLAB, metamodelling, Polynomial Chaos Expansions, PCE, Sparse PCE





Contents

1 Theory 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Building the polynomial basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Families of univariate orthonormal polynomials . . . . . . . . . . . . . 2

1.3.2 Basis truncation schemes . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.3 Extension to arbitrary joint input distributions . . . . . . . . . . . . . . 4

1.4 Calculation of the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Least-Squares minimization method . . . . . . . . . . . . . . . . . . . 7

1.4.3 A posteriori error estimation . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Adaptive sparse PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Sparse PCE: Least Angle regression . . . . . . . . . . . . . . . . . . . . 10

1.5.2 Sparse PCE: Least Angle Regression . . . . . . . . . . . . . . . . . . . . 10

1.5.3 Sparse PCE: Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . 13

1.6 Moments of a PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Other post-processing techniques . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Usage 17

2.1 Reference problem: the Ishigami function . . . . . . . . . . . . . . . . . . . . 17

2.2 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Full model and probabilistic input model . . . . . . . . . . . . . . . . . 18

2.3 Setup of the polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . 18

2.4 Orthogonal polynomial basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Univariate polynomial types . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Truncation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Calculation of the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Projection: Gaussian quadrature . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Ordinary Least-Squares (OLS) . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Sparse PCE: Least Angle Regression . . . . . . . . . . . . . . . . . . . . 26

2.5.4 Sparse PCE: Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . 29

2.5.5 Advanced experimental design options . . . . . . . . . . . . . . . . . . 32



2.5.6 Degree-Adaptive PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Manually specify inputs and computational models . . . . . . . . . . . . . . . 35

2.7 PCE of vector-valued models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Accessing the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Using PCE as a model (predictor) . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Manually specifying PCE parameters (predictor-only mode) . . . . . . . . . . . 36

2.10 Using PCE with constant parameters . . . . . . . . . . . . . . . . . . . . . . . 38

3 Reference List 39

3.1 Create a PCE meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Truncation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 PCE Coefficients calculation options . . . . . . . . . . . . . . . . . . . 42

3.1.3 Quadrature-specific options . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.4 OLS-specific options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.5 LARS-specific options . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.6 OMP-specific options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.7 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Accessing the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Polynomial chaos expansion information . . . . . . . . . . . . . . . . . 45

3.2.2 Experimental design information . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Internal fields (advanced) . . . . . . . . . . . . . . . . . . . . . . . . . 47



Chapter 1

Theory

1.1 Introduction

In most modern engineering contexts (and in applied sciences in general), uncertainty quan-

tification is becoming an increasingly important field. Deterministic scenario-based predictive

modelling is being gradually substituted by stochastic modelling to account for the inevitable

uncertainty in physical phenomena and measurements. This smooth transition, however,

comes at the cost of dealing with greatly increased amounts of information (e.g.when using

Monte-Carlo simulation), usually resulting in the need to perform expensive computational

model evaluations repeatedly.

Metamodelling (or surrogate modelling) attempts to offset the increased costs of stochastic

modelling by substituting the expensive-to-evaluate computational models (e.g. finite ele-

ment models, FEM) with inexpensive-to-evaluate surrogates. Polynomial chaos expansions

(PCE) are a powerful metamodelling technique that aims at providing a functional approxi-

mation of a computational model through its spectral representation on a suitably built basis

of polynomial functions.

Due to the large scope of the UQLAB software framework, its polynomial chaos expansions

module offers extensive facilities for the deployment of a number of non-intrusive PCE calcu-

lation techniques. This part is intended as an overview of the relevant theory and literature

in this field.

1.2 Polynomial chaos expansion

Consider a random vector with independent components X ∈ RM described by the joint

probability density function (PDF) fX . Consider also a finite variance computational model

as a map Y =M(X), with Y ∈ R such that:

E
[
Y 2
]

=

∫
DX

M2(x)fX(x)dx <∞. (1.1)

Then the polynomial chaos expansion ofM(X) is defined as:

1
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Y =M(X) =
∑
α∈NM

yαΨα(X) (1.2)

where the Ψα(X) are multivariate polynomials orthonormal with respect to fX , α ∈ NM

is a multi-index that identifies the components of the multivariate polynomials Ψα and the

yα ∈ R are the corresponding coefficients (coordinates).

In realistic applications, the sum in Eq. (1.2) needs to be truncated to a finite sum, by intro-

ducing the truncated polynomial chaos expansion:

M(X) ≈MPC(X) =
∑
α∈A

yαΨα(X) (1.3)

where A ⊂ NM is the set of selected multi-indices of multivariate polynomials. The construc-

tion of such a set is detailed in Section 1.3.2.

1.3 Building the polynomial basis

The polynomial basis Ψα(X) in Eq. (1.3) is traditionally built starting from a set of univariate
orthonormal polynomials φ(i)

k (xi) which satisfy:〈
φ

(i)
j (xi), φ

(i)
k (xi)

〉
def
=

∫
DXi

φ
(i)
j (xi)φ

(i)
k (xi)fXi(xi)dxi = δjk (1.4)

where i identifies the input variable w.r.t. which they are orthogonal as well as the corre-

sponding polynomial family, j and k the corresponding polynomial degree, fXi(xi) is the

ith-input marginal distribution and δjk is the Kronecker symbol. Note that this definition of

inner product can be interpreted as the expectation value of the product of the multiplicands.

The multivariate polynomials Ψα(X) are then assembled as the tensor product of their uni-

variate counterparts:

Ψα(x)
def
=

M∏
i=1

φ(i)
αi

(xi) (1.5)

Due to the orthonormality relations in Eq. (1.4), it follows that also the multivariate polyno-

mials thus constructed are orthonormal:

〈Ψα(x),Ψβ(x)〉 = δαβ (1.6)

where δαβ is an extension Kronecker symbol to the multi-dimensional case.

1.3.1 Families of univariate orthonormal polynomials

1.3.1.1 Askey-Scheme orthonormal polynomials

The classical families of univariate orthonormal polynomials and the distributions to which

they are orthonormal are given for reference in Table 1 (Sudret, 2007). Detailed description

UQLab-V1.0-104 - 2 -
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Table 1: List of classical univariate polynomial families common in polynomial chaos expan-
sion applications.

Type of variable Distribution Orthogonal polynomials Hilbertian basis ψk(x)

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian 1√
2π
e−x

2/2 Hermite Hek(x) Hek(x)/
√
k!

Gamma xa e−x 1R+(x) Laguerre Lak(x) Lak(x)/
√

Γ(k+a+1)
k!

Beta 1]−1,1[(x) (1−x)a(1+x)b

B(a)B(b) Jacobi Ja,bk (x) Ja,bk (x)/Ja,b,k

J2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

of each of the classical families of polynomials given in the table are abundant in the litera-

ture, see e.g.Xiu and Karniadakis (2002). The values of the polynomials are computed using

Equation 1.7.

Note: The computation of the polynomial values via recurrence relation is not always
stable. In practice, Laguerre and Jacobi polynomials of degree over 23 should be
avoided. See Gautschi (1993) for details.

1.3.1.2 Polynomials orthonormal with respect to arbitrary distributions

It is possible to construct sets of univariate polynomials of the form: π̃n = πn√
〈πn,πn〉

orthog-

onal with respect to an arbitrary probability distribution f(x). In UQLAB this is performed

by employing the Stieltjes procedure. The Stieltjes procedure employs a recurrence relation

that holds for the computation of any orthogonal polynomial that reads:√
βn+1π̃n+1(x) = (x− αn)π̃n(x)−

√
βnπ̃n−1(x), n = 0, 1, 2, ... (1.7)

and the so-called Christoffel-Darboux formulae

αn =
〈xπn, πn〉
〈πn, πn〉

(1.8)

βn =
〈πn, πn〉
〈πn−1, πn−1〉

(1.9)

where 〈g, h〉 =
∫
g(x)h(x)f(x)dx. The numerical integrations for the inner products involved

in the Christoffel-Darboux formulae are performed using the MATLAB adaptive integrator

(Shampine (2008)). For more details on the procedure refer to Gautschi (2004).

1.3.2 Basis truncation schemes

Given the polynomials in Table 1, it is straightforward to define a “standard truncation

scheme”, which corresponds to all polynomials in the M input variables of total degree less

than or equal to p:

UQLab-V1.0-104 - 3 -
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AM,p = {α ∈ NM : |α| ≤ p} card AM,p ≡ P =

(
M + p

p

)
(1.10)

Several additional truncation schemes can be built that are better suited to various types of

applications. Within UQLAB, two additional non-mutually-exclusive schemes are available:

maximum interaction and hyperbolic norm.

1.3.2.1 Maximum interaction

This truncation scheme is based on choosing a subset of the terms defined in Eq. (1.10), such

that the α’s have at most r non-zero elements (low-rank α):

AM,p,r = {α ∈ AM,p : ||α||0 ≤ r}, (1.11)

where ||α||0 =
M∑
i=1

1{αi>0} is the rank of the multi-index α.

This truncation scheme can be used to significantly reduce the cardinality of the polynomial

basis by limiting the number of interaction terms, which is particularly effective in high

dimension.

1.3.2.2 Hyperbolic truncation

A modification of the standard scheme, the hyperbolic (or q-norm) truncation scheme makes

use of the parametric q-norm to define the truncation Blatman (2009):

AM,p,q = {α ∈ AM,p : ||α||q ≤ p}, (1.12)

where:

||α|| =

(
M∑
i=1

αqi

)1/q

. (1.13)

Note that for q = 1 hyperbolic truncation corresponds exactly to the standard truncation

scheme in Eq. (1.10). For q < 1, hyperbolic truncation includes all the high-degree terms in

each single variable, but discourages equivalently high order interaction terms. An example

of the behaviour of the hyperbolic norm in two dimensions for different values of p and q is

shown in Figure 1.

1.3.3 Extension to arbitrary joint input distributions

In case the input random variables are not independent, or no standard polynomials are

defined for their marginal distributions, it is possible to define an isoprobabilistic transform

from the original probabilistic space to the so-called reduced space. Consider an input vector

of random variables Z with joint PDF Z ∼ fZ(z). Then, there exists an isoprobabilistic

transform T such that:

X = T (Z), Z = T −1(X) (1.14)

UQLab-V1.0-104 - 4 -
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Figure 1: Hyperbolic truncation set for varying values of p (constant in each column) and q
(constant in each row) as defined in Eq. (1.12). For q = 1, hyperbolic truncation reduces to
the standard truncation scheme (first row). Decreasing the value of q decreases the amount
of mixed order polynomials included in the expansion.

where X is a random vector with independent components distributed according to one of

the distributions in Table 1. We can then rewrite Eq. (1.2) as:

Y =M(Z) =
∑
α∈NM

yαΨα (T (Z)) (1.15)

This transform also allows to use any type of orthonormal polynomial with any type of input

marginals, at the cost of an additional isoprobabilistic transform. Note that this type of

transform can be highly non-linear, more so when transforming from a compact to a non-

compact support distribution (e.g., uniform to Gaussian). The added non-linearity can have

a significant detrimental effect on the accuracy of the final truncated PCE, because it may

result in a more complex model.

For simplicity and without loss of generality, we will leave out any reference to possible

isoprobabilistic transforms in the following and consider the random vector X as the vector

of independent input variables with marginal distributions defined in Table 1.

1.4 Calculation of the coefficients

Several methods exist to calculate the coefficients yα of the polynomial chaos expansion for

a given basis (Eq (1.3)). In UQLAB, only non-intrusive methods are implemented, i.e. the co-

efficients are the result of the post-processing of a set of model evaluations, the experimental
design, that are given on a proper sampling of the input random variables.

UQLab-V1.0-104 - 5 -
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The two principal strategies to calculate the polynomial chaos coefficients non-intrusively are

projection and least-square minimization.

1.4.1 Projection method

The calculation of the polynomial coefficients yα with the projection approach directly fol-

lows from the definition of PCE given in Eq. (1.2) and from the orthonormality of the poly-

nomial basis. Indeed, taking the expectation value of Eq. (1.2) multiplied by Ψβ(x) yields:

yα = E [Ψα(X) · M(X)] (1.16)

The calculation of the coefficients is therefore reduced to the calculation of the expectation

value in Eq. (1.16). It can be cast as a numerical integration problem which in turn can be

efficiently solved using quadrature methods.

Gaussian quadrature: a standard tool in the numerical evaluation of integrals, Gaussian

quadrature is based on a simple weighted-sum scheme:

yα =

∫
ΩX

M(x)Ψα(x)fX(x)dx ≈
N∑
i=1

w(i)M(x(i))Ψα(x(i)) (1.17)

The set of weights w(i) and quadrature points x(i) (the experimental design) are derived

from Lagrange polynomial interpolation and guarantees exactness in the evaluation of the

integrals of functions of polynomial complexity (Gander and Gautschi (2000)).

The integration weights w(i) and the integration nodes x(i) are uniquely determined by the

marginals of the independent components of the input random vector X, and they corre-

spond to the roots of the corresponding polynomial basis functions as reported in Table 1.

In UQLAB the Gaussian quadrature nodes and weights are numerically calculated with the

Golub-Welsch algorithm (Gautschi (2004), Golub and Welsch (1969)).

Standard multivariate Gaussian quadrature is achieved by a tensor-product of univariate

integration rules. Therefore the number of integration nodes (i.e.full-model evaluations) in-

creases rapidly with the number of input variables. As an example, selecting a max poly-

nomial degree p would require (p + 1) integration points in each dimension, leading to

N = (p+ 1)M in Eq (1.17). This is the so-called curse of dimensionality.

Sparse quadrature: a more recent tool to deal with high-dimensional integration, Smolyak’

sparse quadrature is an alternative approach to the original tensor-product multi-dimensional

quadrature (Gerstner and Griebel, 1998). The integration is still performed as given in

Eq. (1.17), but the weights are derived from a combination of lower order standard quadra-

ture terms:

QM,l
Smolyak ≡

∑
l+16|i|6l+M

(−1)M+l−|i| ·

(
M − 1

k +M − |i|

)
·Qi (1.18)

UQLab-V1.0-104 - 6 -
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where:

i = i1, i2, ..., iM , |i| = i1 + ...+ iM ∈ N

and

Qi = Qi1 ⊗ ....⊗QiM

is a tensor product of the lower order Gaussian quadrature rules identified by the multi-

index i. This method can lead to a substantially reduced number of integration points w.r.t.

classical Gaussian quadrature without sacrificing accuracy in higher dimensions.

1.4.1.1 Error estimation

An a posteriori error estimate of the Gaussian quadrature error in the estimation of the PCE

coefficients in Eq. (1.17) can be calculated by taking the expectation value of the residual

mean-square error E
[
M(X)−MPC(X)

]
by integrating it with the same quadrature rule

and on the same nodes:

εres ≈

N∑
i=1

[
w(i)

(
Y (i) − yTΨ(x(i))

)]2
N∑
i=1

(
M(x(i))− µ̂Y

)2 (1.19)

where y = {yα1 , . . . , yαP }
T is the vector of polynomial coefficients,

Ψ(x(i)) =
{

Ψα1(x(i)), . . . ,ΨαP (x(i))
}T

is a vector containing the values of the polynomial

basis elements at quadrature point x(i) and µ̂Y = 1
N

N∑
i=1
M(x(i)) is the sample mean of the

set of quadrature points.

1.4.2 Least-Squares minimization method

A different approach to estimate the coefficients in Eq. (1.3) is to set up a least-squares

minimization problem (Berveiller et al., 2006). The infinite series in Eq. (1.2) can be written

as a sum of its truncated version Eq. (1.3) and a residual:

Y =M(X) =

P−1∑
j=0

yj Ψj(X) + εP ≡ yTΨ(X) + εP (1.20)

where P = card AM,p, εP is the truncation error, yα = {y0, . . . , yP−1}T is a vector containing

the coefficients and Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}T is the matrix that assembles the values

of all the orthonormal polynomials in X.

The least-square minimization problem can then be setup as:

ŷ = arg minE
[(
yTΨ(X)−M(X)

)2
]
. (1.21)

UQLab-V1.0-104 - 7 -



UQLAB User Manual

1.4.2.1 Ordinary Least-Squares

A direct approach to solving Eq. (1.21) is given by Ordinary Least-Squares (OLS). Given a

sampling of size N of the input random vector X = {x(1), ...,x(N)}T (the experimental de-

sign) and the corresponding model responses Y = {y(1), ..., y(N)}T, the ordinary least-square

solution of Eq. (1.21) reads:

ŷ = (ATA)−1ATY, (1.22)

where:

Aij = Ψj

(
x(i)
)

i = 1, . . . , n ; j = 0, . . . , P − 1 (1.23)

is the so-called experimental matrix that contains the values of all the basis polynomials in

the experimental design points.

The main advantage of the least-square minimization method lies in the fact that an arbitrary

number of points can be used to calculate the coefficients, as long as they are a representative

sample of the random input vector X. Recent theoretical background to the convergence of

the least-square minimization method can be found in Migliorati et al. (2013).

1.4.3 A posteriori error estimation

Due to its formulation in Eq. (1.20), least-square minimization offers a natural candidate to

estimate the residual error εP . The relative generalization error εgen is defined as:

εgen = E
[(
M(X)−MPC(X)

)2]
/Var [Y ] (1.24)

There are two main ways to estimate εgen: via normalized empirical error and leave-one-out
cross-validation error.

1.4.3.1 Normalized empirical error

The normalized empirical error εemp is an estimator of the generalization error based on the

accuracy with which the metamodel reproduces the experimental design model evaluations

Y. It is given by:

εemp =

N∑
i=1

(
M(x(i))−MPC(x(i))

)2
N∑
i=1

(
M(x(i))− µ̂Y

)2 (1.25)

where µ̂Y = 1
N

N∑
i=1
M(x(i)) is the sample mean of the experimental design response.

The estimator in Eq. (1.25), although inexpensive to calculate, leads to over-fitting: it is

a monotone decreasing function of the polynomial degree p regardless of the size of the

experimental design.

UQLab-V1.0-104 - 8 -
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1.4.3.2 Leave-one-out cross-validation error

The leave-one-out (LOO) cross-validation error εLOO is designed to overcome the over-fitting

limitation of εemp by using cross-validation, a technique developed in statistical learning the-

ory. It consists in building N metamodelsMPC\i, each one created on a reduced experimen-

tal design X\x(i) = {x(j), j = 1, ..., N, j 6= i} and comparing its prediction on the excluded

point x(i) with the real value y(i) (see, e.g., Blatman and Sudret (2010)). The leave-one-out

cross-validation error can be written as:

εLOO =

N∑
i=1

(
M(x(i))−MPC\i(x(i))

)2
N∑
i=1

(
M(x(i))− µ̂Y

)2 . (1.26)

In practice, when the results of a least-square minimization are available, there is no need

to explicitly calculate N separate meta-models, but one can use the following formulation to

calculate εLOO (see Blatman (2009), appendix D):

εLOO =
N∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2/ N∑
i=1

(
M(x(i))− µ̂Y

)2
, (1.27)

where hi is the ith component of the vector given by:

h = diag
(
A(ATA)−1AT

)
, (1.28)

and A is the experimental matrix in Eq. (1.23).

1.4.3.3 Corrected error estimates

Further empirical corrections exist to ensure that the generalization error estimates from both

εemp and εLOO are not underestimated. They generally take the form:

ε∗ = ε T (P,N), (1.29)

where ε∗ is the corrected error, ε is the original error and T (P,N) is a correction factor that

typically increases with the number of regressors P and tends to 1 when the size of the

experimental design N →∞.

A correction factor particularly effective in the context of PCE with small experimental de-

signs (Blatman (2009), after Chapelle et al. (2002)) is given by:

T (P,N) =
N

N − P

(
1 +

tr(C−1
emp)

N

)
, (1.30)

with

Cemp =
1

N
ATA. (1.31)

UQLab-V1.0-104 - 9 -



UQLAB User Manual

1.5 Adaptive sparse PCE

A-posteriori error estimation is a very important tool at the basis of any adaptive algorithm,

because it allows one to estimate the accuracy of the model without the need of running

additional expensive model evaluations to generate a proper validation set. In the context of

PCE, it can be used in two main families of adaptive algorithms :

• Basis-adaptive PCE: starting from a small candidate polynomial basis, one gradually

adds new elements (e.g.by increasing the maximum polynomial degree in the trunca-

tion scheme) and calculates the corresponding PCE. The best one in terms of general-

ization error is chosen as the best candidate.

• Sparse PCE: starting from a candidate polynomial basis, only a subset of the most

relevant polynomials is retained, while the coefficients of all the others are set to 0.

The two families of adaptivity are not mutually exclusive: Blatman and Sudret (2011) pro-

pose an algorithm that combines both basis-adaptivity by iteratively increasing the polyno-

mial degree and sparse basis selection at each iteration to minimize over-fitting.

1.5.1 Sparse PCE: Least Angle regression

One commonly used strategy for basis-adaptive PCE is that of iteratively relaxing the trunca-

tion scheme by increasing the maximum allowed polynomial degree. Given a target accuracy

εT and a maximum number of iterationsNImax, the algorithm can be summarized as follows:

1. Generate an initial basis with one or a combination of the truncation schemes in Sec-

tion 1.3.2, with p = p0;

2. Calculate the PCE coefficients and the corresponding generalization error estimate

εLOO in Eqs. (1.26) or (1.29) by least-square minimization;

3. Compare the error with a preset threshold εT . If εLOO ≤ εT or the number of iterations

NI = NImax, stop the algorithm and return the PCE with the lowest generalization

error. Otherwise, set p = p+ 1 and return to Step 1.

This simple algorithm is effective in letting the maximum degree of the PCE be driven directly

from the available data. For this type of algorithm to properly converge, a norm sensitive to

over-fitting should be chosen, e.g.εLOO.

1.5.2 Sparse PCE: Least Angle Regression

In most applied science problems, only low order interactions between the input variables

tend to be important. This is known as the sparsity-of-effects principle. In other words,

when choosing adaptive PCE calculation strategies, models that favour low rank trunca-

tion schemes should be preferred. The truncation schemes presented in Section 1.3.2.1 and

1.3.2.2 both produce sparser PCE than the classical truncation scheme.
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A complementary strategy to favour sparsity in high dimension consists in directly modifying

the least-square minimization problem in Eq. (1.21) by adding a penalty term of the form

λ||y||1, i.e. solving:

ŷ = argmin
y∈R|A|

E
[(
yTΨ(X)−M(X)

)2
]

+ λ||y||1, (1.32)

where the regularization term ||ŷ||1 =
∑
α∈A
|yα| forces the minimization to favour low-

rank solutions. Several algorithms exist that solve the penalized minimization problem in

Eq. (1.32), including least absolute shrinkage and selection operator (LASSO, Tibshirani

(1996)), forward stagewise regression (Hastie et al., 2007) and least angle regression, or

LAR, (Efron et al., 2004). In the context of PCE, Blatman and Sudret (2011) successfully ap-

plied the LAR algorithm to obtain sparse PCE models that are accurate even with very small

experimental designs.

1.5.2.1 The LAR algorithm

The LAR algorithm is a linear regression tool based on iteratively moving regressors from a

candidate set to an active set. The next regressor is chosen based on its correlation with the

current residual. At each iteration, analytical relations are used to identify the best set of

regression coefficients for that particular active set, by imposing that every active regressor

is equicorrelated with the current residual.

The optimal number of predictors in the metamodel (i.e. the optimal number of LAR steps)

may be determined using a suitable criterion.

Because the algorithm produces an ordinary least-squares solution to a reduced-size regres-

sion problem,

the a posteriori error estimate in Eq. (1.27) can be used as a measure of the accuracy of the

current model, hence enabling adaptivity.

The full LAR algorithm in the context of PCE (Blatman and Sudret, 2011) reads:

Initialization:

• yα = 0, ∀α ∈ AM,p,q;

• Candidate set: Ψα;

• Active set: ∅;

• Residual: r0 = Y

Iterative algorithm

1. Find the regressor Ψαj that is most correlated with the current residual

2. Move all the coefficients of the current active set towards their least-square value until

their regressors are equicorrelated to the residual as some other regressor in the can-

didate set. This regressor will also be the most correlated to the residual in the next

iteration.
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3. Calculate and store the error estimate εjLOO for the current iteration

4. Update all the active coefficients and move Ψαj from the candidate set to the active set

5. Repeat the previous steps until the size of the active set is equal to m = min(P,N − 1)

After the iterations are finished, the candidate set of regressors with the lowest εLOO is se-

lected as the best sparse candidate basis. A typical example of the evolution of εjLOO vs. j is

shown in Figure 2.

Figure 2: Typical evolution of εLOO vs. LAR iteration. The evolution is in many cases smooth
and consistently convex throughout the iterations. In some cases with very small experimen-
tal designs, however, local minima in the early iterations can be observed.

1.5.2.2 Hybrid LAR

One limitation of the LAR algorithm is that it is defined only for non-constant regressors (due

to the presence of the cross-correlation-based selection at the first Step of the algorithm). This

limitation can be overcome by introducing the so-called hybrid-LAR step. At the end of the

LAR iterations, after the best basis is selected, the constant regressor is added to the selected

basis and OLS is performed to calculate the final coefficients.

1.5.2.3 LAR early stop criterion

When dealing with a large number of regressors, each LAR iteration can be time consuming

(mostly due to the calculation of the εLOO, which entails a large matrix inversion). An early

stop criterion can be introduced in practical implementations to mitigate the corresponding

costs and speed-up the algorithm. The criterion stems from the observation that in most

real-case scenarios the behaviour of εjLOO is relatively smooth with the iteration number j

(see Figure 2) and convex. An effective and robust early stop criterion for LAR is then to stop
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adding regressors after the εLOO is above its minimum value for at least 10% of the maximum

number of possible iterations.

1.5.3 Sparse PCE: Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a greedy algorithm proposed by Pati et al. (1993) as

a refinement to the Matching Pursuit algorithm by Mallat and Zhang (1993). OMP works by

iteratively retrieving the polynomial basis elements that are most correlated with the current

approximation residual and adding them to the active set of regressors.

OMP uses a greedy iterative strategy that minimizes the approximation residual at each iter-

ation. Consider the approximation residual Rn for a polynomial basis with n elements and

the approximation residual Rn+1 for a polynomial basis with n + 1 elements. By projecting

the residual Rn onto a new polynomial the following equation is obtained:

Rn =
〈
Rn,Ψαn+1

〉
Ψαn+1 +Rn+1 (1.33)

Therefore, the residual Rn+1 is by construction orthogonal to the new polynomial Ψαn+1 .

Projecting Eq. (1.33) onto Rn yields:∥∥Rn∥∥2
=
∣∣〈Rn,Ψαn+1〉

∣∣2 +
∥∥Rn+1

∥∥2
. (1.34)

It follows that minimizing the approximation residual Rn+1 is equivalent to choosing a poly-

nomial such that
∣∣〈Rn,Ψαn+1〉

∣∣ is maximized. Therefore, each iteration of the OMP algorithm

consists in solving the following problem:

Ψαn+1 = arg max
α∈A

∣∣〈Rn,Ψα〉∣∣ (1.35)

After the basis element Ψαn+1 has been added to the active set of regressors, all the corre-

sponding polynomial coefficients yα are updated via ordinary least squares. This additional

step guarantees that the newly calculated residual is orthogonal to all the regressors in the

current active set.

1.5.3.1 The OMP algorithm

The OMP algorithm is a linear regression tool that minimizes the norm of the approximation

residual at each iteration. The algorithm uses the leave-one-out error estimator in Eq. (1.26)

to adaptively select the best active set. The implementation of the OMP algorithm in the

context of PCE reads:

Initialization:

• y0
α = 0, ∀α ∈ AM,p,q;

• Candidate set: ΨC,0 = Ψα;

• Active set: ΨA,0 = ∅;

• Residual: R0 = Y
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Iterative algorithm:

1. Find the polynomial Ψαj that is most correlated with the current approximation resid-

ual Rj−1.

2. Add the polynomial Ψαj to the active set of polynomials, i.e. ΨA,j = ΨA,j−1 ∪Ψαj .

3. Calculate the new polynomial coefficients yjα by projecting the model response Y onto

the active set of polynomials, i.e. calculate an ordinary least squares using the active

set.

4. Calculate the new approximation residual Rj = Y −ΨA,jy
j
α.

5. Calculate and store the error estimate εjLOO for the current iteration.

6. Repeat the previous steps until the size of the active set is equal to m = min (P,N).

After the iterative procedure is terminated, the active set of polynomials with the lowest εLOO
is selected as the best sparse basis.

1.5.3.2 OMP early stop criterion

When the polynomial basis size P is large, each OMP iteration can be computationally ex-

pensive. An early stop criterion can be used to reduce the computational costs. Similar to

the LAR algorithm, the behaviour of εjLOO is relatively smooth and convex (see Figure 3).

The proposed early stop criterion for OMP stops adding regressors after the εLOO is above its

minimum value for at least 10% of the maximum number of possible iterations.

Figure 3: Typical evolution of εLOO vs. OMP iterations. The evolution is in many cases
relatively smooth and consistently convex throughout the iterations. In some cases with very
small experimental designs, however, local minima in the early iterations can be observed.
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1.6 Moments of a PCE

Due to the orthonormality of the polynomial basis, the first two moments of a PCE are en-

coded in its coefficients. In particular, the mean value of a PCE reads:

µPC = E
[
MPC(X)

]
= y0 (1.36)

where y0 is the coefficient of the constant basis term Ψ0 = 1.

Similarly, the variance of a PCE reads:

(σPC)2 = E
[
(MPC(X)− µPC)2

]
=
∑
α∈A
α 6=0

y2
α (1.37)

where the summation is on the coefficients of the non-constant basis elements only.

1.7 Other post-processing techniques

When the polynomial coefficients are known, it is straightforward to evaluate the metamodel

on new samples of the input random vector X. In fact, it is sufficient to directly apply

Eq. (1.2) by first evaluating the multivariate polynomials on the new sample and summing

them weighted by their coefficients. The computational costs to perform this operation are

limited to the evaluation of the univariate polynomials on the new sample and a small num-

ber of matrix multiplications, hence making this operation very efficient. This property can

be used effectively for calculating the PDF of the model response accurately by using large

Monte-Carlo samples of the inputs and, e.g., Kernel smoothing techniques.

Another important property of PCE is that the coefficients encode important information

about the ANOVA decomposition of the surrogate model, which can be exploited to effectively

calculate global sensitivity indices at very limited costs. The reader is referred to the UQLAB

User Manual – Sensitivity Analysis module for further information on the relation between

global sensitivity analysis and polynomial chaos expansions.
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Usage

In this section a reference problem will be set up to showcase how each of the techniques

described in Part 1 can be deployed in UQLAB.

2.1 Reference problem: the Ishigami function

Polynomial chaos expansion aims at approximating a computational model with a polyno-

mial surrogate. To this end, we will make use of a well-known benchmark for polyno-

mial chaos expansions: the Ishigami function (Ishigami and Homma (1990), www.sfu.ca/

˜ssurjano/ishigami.html). It is an analytical 3-dimensional function characterized by

non-monotonicity and high non-linearity, given by the following equation:

f(x) = sin(x1) + a sin2(x2) + bx4
3 sin(x1) (2.1)

where the parameters are set to a = 7 and b = 0.07 in this example (see e.g.Ishigami and

Homma (1990)).

The input random vector consists of three i.i.d. uniform random variables Xi ∼ U(−π, π).

An example UQLAB script that showcases several of the currently available PCE expansion

techniques on the Ishigami function can be found in the example file:

Examples/PCE/uq_Example_PCE_01_Coefficients.m

2.2 Problem setup

Recalling Eq. (1.3), truncated PCE reads:

M(X) ≈
∑
α∈A

yαΨα(X)

The main ingredients that need to be setup in a PCE analysis are:

• A model to surrogate Y =M(X);

• A probabilistic input model (random input vector X);
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• A truncated polynomial basis defined by A;

• The polynomial coefficients {yα, α ∈ A}.

2.2.1 Full model and probabilistic input model

The model in Eq. (2.1) is implemented as a Matlab m-file in:

Examples/SimpleTestFunctions/uq_ishigami.m

To surrogate it using UQLAB, we need to first configure a basic MODEL object:

MOpts.mFile = 'uq_ishigami' ;
myModel = uq_createModel(MOpts);

For more details about the configuration options available for a model, please refer to the

UQLAB User Manual – the MODEL module .

The three independent input variables can be defined as:

for ii = 1 : 3
IOpts.Marginals(ii).Type = 'Uniform' ;
IOpts.Marginals(ii).Parameters = [-pi, pi] ;

end
myInput = uq_createInput(IOpts);

For more details about the configuration options available for an INPUT object, please refer

to the UQLAB User Manual – the INPUT module .

2.3 Setup of the polynomial chaos expansion

The PCE module creates a MODEL object that can be used as any other model. Its configura-

tion options, however, are generally more complex than for a basic full model definition like

the one in Section 2.2.1.

The basic options common to any PCE metamodelling MODEL read:

MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';

The input dimension of the problem M is automatically retrieved by the configuration of the

INPUT module given above. The additional configuration options needed to properly create a

PCE object in UQLAB are given in the following subsections.

2.4 Orthogonal polynomial basis

2.4.1 Univariate polynomial types

For most practical applications, it is not necessary in UQLAB to manually specify the uni-

variate polynomial types that form the multivariate polynomial basis Ψα(X) via Eq. (1.5).

The default behaviour of UQLAB is to choose univariate polynomials depending on the dis-

tributions of the input variables, according to Table 2. For non-classical input distributions,
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the univariate orthonormal polynomials are computed numerically by applying the Stieltjes

procedure. See Section 1.3.1.2.

Table 2: Default univariate polynomial types used in UQLAB w.r.t. input distributions

Input PDF fXi(Xi) Univariate polynomial family
U(a, b) Legendre
N (µ, σ) Hermite
Γ (λ, κ) Laguerre(λ, κ)
B (r, s, a, b) Jacobi(r, s)
logN (µ, σ) Hermite
Other Arbitrary

Note that the Jacobi and Laguerre polynomials are defined parametrically with the Beta and

Gamma distribution parameters respectively. When a distribution does not belong to the

above, the recurrence terms will be numerically computed if the integral of the distribu-

tion itself can be estimated accurately with numerical integration. Otherwise the Hermite

polynomials will be used for distributions that do not have bounded support and Legendre

polynomials when distributions have bounded support.

It is possible, however, to manually force the univariate polynomial families to the desired

value by specifying the PolyTypes option in the input. As an example, to force the use

of Hermite polynomials in the first dimension, Legendre polynomials in the second, and

numerically compute the orthonormal polynomials for the third direction one has to specify:

MetaOpts.PolyTypes = {'Hermite', 'Legendre', 'Arbitrary'};

In case Laguerre or Jacobi polynomials are selected with PolyTypes, it is necessary for the

PolyTypesParams option to be defined. The definition of the parameters of the polynomial

families are consistent with that of their respective distributions and the redundant param-

eters, such as the bounds of the beta distribution for Jacobi polynomials, are ignored. For

example one can specify:

MetaOpts.PolyTypes = {'Hermite', 'Jacobi' , 'Laguerre'};
MetaOpts.PolyTypesParams = {[] , [2, 3, 0, 1], [3, 4] };

The dimension of the MetaOpts.PolyTypes cell-array must agree with that of the input

model.

2.4.2 Truncation schemes

The default truncation strategy in UQLab is the standard truncation scheme in Eq. (1.10),

with maximum degree p = 3. To specify a desired maximum polynomial degree it is sufficient

to add the Degree field to the MetaOpts configuration variable. To specify a maximum

polynomial degree of e.g.10 one can add:

MetaOpts.Degree = 10;
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2.4.2.1 Basis truncation

Additionally, one can configure any of the truncation strategies described in Section 1.3.2.1

and 1.3.2.2 with the optional TruncOptions field. A q − norm truncation with q = 0.75 and

maximum rank r = 2 can be specified as follows:

MetaOpts.TruncOptions.qNorm = 0.75;
MetaOpts.TruncOptions.MaxInteraction = 2;

The two truncation schemes are not mutually exclusive and they can be specified either one-

at-a-time or both together.

2.4.2.2 User-specified basis

It is also possible to directly specify the set of multi-indicesA that will be used to generate the

multivariate polynomial basis. This can be accomplished by manually specifying the P ×M
matrix of polynomial degrees in the TruncOptions.Custom variable. As an example, one

can specify a basis with M = 3, p = 2 and basis elements Ψ0,0,0(x),Ψ0,2,0(x),Ψ1,0,0(x) and

Ψ0,1,1(x), as follows:

MetaOpts.Degree = 2;
MetaOpts.TruncOptions.Custom = [0 0 0; 0 2 0; 1 0 0; 0 1 1];

2.5 Calculation of the coefficients

The remaining ingredient needed to complete the PCE is the set of polynomial coefficients

yα. In this section, the techniques introduced in Section 1.4 are deployed in UQLAB.

2.5.1 Projection: Gaussian quadrature

Calculating the PCE coefficients with Gaussian quadrature does not require any special con-

figuration. Due to the very high non-linearity of the Ishigami function, a relatively high

polynomial degree of p = 14 is needed to achieve satisfactory accuracy.

A projection-based PCE can be created with the following lines of code (note that for

quadrature-based calculation of the coefficients no truncation scheme is necessary, as all

the coefficients up to the specified degree are calculated simultaneously anyway):

% Repor t ing the p r e v i o u s c o n f i g u r a t i o n o p t i o n s as a reminder
MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';

% S p e c i f i c a t i o n o f 14 th degree , Gauss ian quadrature−based p r o j e c t i o n
MetaOpts.Degree = 14;
MetaOpts.Method = 'quadrature';

% C r e a t i o n o f the metamodel :
myPCE_Quadrature = uq_createModel(MetaOpts);
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Once the model is created, a report with basic information about the PCE can be printed out

as follows:

uq_print(myPCE_Quadrature)

which produces the following output:

%------------ Polynomial chaos output ------------%

Number of input variables: 3

Maximal degree: 14

q-norm: 1.00

Size of full basis: 680

Size of sparse basis: 680

Full model evaluations: 26384

Quadrature error: 5.7065916e-10

Mean value: 3.5000

Standard deviation: 3.7208

Coef. of variation: 106.309%

%--------------------------------------------------%

Similarly, a visual representation of the spectrum of the resulting non-zero coefficients can

be visualized graphically as follows:

uq_display(myPCE_Quadrature);

which produces the image in Figure 4.

Figure 4: Graphical representation of the logarithmic spectrum of the PCE coefficients. Most
of the coefficients of the 680 basis elements are close to 0.
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2.5.1.1 Accessing the results

Coefficients and basis

All the information needed to evaluate Eq. (1.3) are available in the output structure

myPCE_Quadrature.PCE:

myPCE_Quadrature.PCE
ans =

Basis: [1x1 struct]
Coefficients: [680x1 double]
Moments: [1x1 struct]

The PCE.Coefficients array contains the coefficients in column vector format for all of the

680 Ψα(X) basis elements. The corresponding basis elements are given by the PCE.Basis

structure:

myPCE_Quadrature.PCE.Basis
ans =

PolyTypes: {3x1 cell}
Indices: [680x3 double]
MaxCompDeg: [14 14 14]
MaxInteractions: 3
Degree: 14

The Basis.PolyTypes cell array contains the M univariate polynomial families φ(i) in

Eq. (1.5). The Basis.Indices matrix contains the α multi-indices in Eq. (1.3) in row-

vector format (in other words, the index set in AM,p,q set in Eq. (1.12)). To each row of

Basis.Indices corresponds a coefficient in the array PCE.Coefficients. The additional

fields contain respectively:

• Basis.MaxCompDeg: the maximum univariate polynomial degree for each input vari-

able for the basis elements with non-zero coefficients.

• Basis.MaxInteractions: the maximum rank of the basis elements with non-zero

coefficients.

• Basis.Degree: the maximum degree of the basis elements with non-zero coefficients.

Finally, the PCE.Moments structure contains mean and variance of the model as calculated

from the PCE (Eqs. (1.36),(1.37)).

For more details about the available information in the PCE output, please refer to Sec-

tion 3.2.1.

Model evaluations

The quadrature points and their corresponding model evaluations are stored in the structure

myPCE_Quadrature.ExpDesign:

myPCE_Quadrature.ExpDesign
ans =
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Sampling: 'Quadrature'
NSamples: 3375
X: [3375x3 double]
U: [3375x3 double]
W: [3375x1 double]
Y: [3375x1 double]

The ExpDesign.Sampling field contains information about the generation of the sample

of model evaluations. In the case of quadrature-based projection method, it can only have

the 'Quadrature' value. The ExpDesign.NSamples field contains the total number of full-

model evaluations that were run during the calculation.

The remaining fields contain, respectively:

• ExpDesign.X: the quadrature nodes where the model is evaluated;

• ExpDesign.U: the same points as ExpDesign.X, but rescaled and transformed onto

the domain of definition of the orthogonal polynomials;

• ExpDesign.Y: the full model evaluation at each of the quadrature notes;

• ExpDesign.W: the quadrature weight of each point as in Eq. (1.17).

A posteriori error estimates

The structure myPCE_Quadrature.Error contains the normalized quadrature error estimate

from equation Eq. (1.19).

2.5.1.2 Advanced options

There are several advanced options for the calculation of PCE coefficients with the projec-

tion method, namely selecting the Smolyak’ sparse quadrature method in Section 1.4.1 and

specifying the quadrature level.

• Smolyak’ scheme: the Smolyak’ quadrature scheme can be enabled by adding the

following option:

MetaOpts.Quadrature.Type = 'Smolyak';

Please note that up to dimension M = 4 Smolyak’ scheme requires more nodes than

full quadrature for the same level of accuracy.

• Quadrature level: the quadrature level (by default set to l = p + 1, where p is the

maximum polynomial degree) can be set to the desired value (e.g.l = 15) as:

MetaOpts.Quadrature.Level = 15;

For a comprehensive list of the options available for the quadrature method, see Table 5.
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2.5.2 Ordinary Least-Squares (OLS)

The calculation of PCE coefficients with Ordinary Least-Squares on a sample of N = 1, 000

model evaluations can be enabled with the following configuration:

% Repor t ing the p r e v i o u s c o n f i g u r a t i o n o p t i o n s as a reminder
MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';

% S p e c i f i c a t i o n o f 14 th degree , OLS−based PCE
MetaOpts.Degree = 14;
MetaOpts.Method = 'OLS';

% S p e c i f i c a t i o n o f the exper imen ta l des ign
MetaOpts.ExpDesign.NSamples = 1000;

% C r e a t i o n o f the metamodel :
myPCE_OLS = uq_createModel(MetaOpts);

Note that UQLAB will create the experimental design and evaluate the model response on

it. Once the PCE is calculated, a report with basic information about the PCE results can be

printed on screen by:

uq_print(myPCE_OLS);

which produces the following report:

%------------ Polynomial chaos output ------------%

Number of input variables: 3

Maximal degree: 14

q-norm: 1.00

Size of full basis: 680

Size of sparse basis: 680

Full model evaluations: 1000

Leave-one-out error: 1.9344452e-08

Mean value: 3.5000

Standard deviation: 3.7209

Coef. of variation: 106.310%

%--------------------------------------------------%

A visual representation of the spectrum of the resulting PCE coefficients can be created as

follows:

uq_display(myPCE_OLS);

which produces the image in Figure 5.

2.5.2.1 Accessing the results

Coefficients and basis The coefficients and basis can be accessed from the structure

myPCE_OLS.PCE:
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Figure 5: Graphical representation of the logarithmic spectrum of the PCE coefficients. Again,
most of the coefficients of the 680 basis elements are close to 0.

myPCE_OLS.PCE
ans =
Basis: [1x1 struct]
Coefficients: [680x1 double]
Moments: [1x1 struct]

Model evaluations

The model evaluations used to calculate the PCE coefficients with OLS can be accessed from

the myPCE_OLS.ExpDesign structure:

myPCE_OLS.ExpDesign
ans =
NSamples: 1000
Sampling: 'LHS'
X: [1000x3 double]
U: [1000x3 double]
Y: [1000x1 double]

The ExpDesign.Sampling field has the 'LHS' value. It represents the sampling strategy

used to create the experimental design, see Section 2.5.2.2 for advanced options for the cre-

ation of the experimental design.

A posteriori error estimates

The a posteriori error estimates are stored in the myPCE_OLS.Error structure:

myPCE_OLS.Error
ans =
LOO: 1.9344e-08
normEmpError: 1.2210e-12
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where Error.normEmpError and Error.LOO corresponds to the empirical error estimate in

Eq. (1.25) and to the modified leave-one-out error in Eq. (1.27), respectively.

Note that the Error.normEmpError is much smaller than Error.LOO, as it does not account

for over-fitting.

For a comprehensive overview of the outputs available for the OLS method, see Table 19.

2.5.2.2 Advanced options

There are no OLS specific options per se. However, when combined with degree adaptive PCE
described in Section 1.5 and 2.5.6, two parameters can be set to tune the convergence of the

algorithm:

• Target accuracy: by default set to 0, it corresponds to εT in Section 1.5. It can be

manually set to any value (e.g.10−8) as follows:

MetaOpts.OLS.TargetAccuracy = 1e-8;

• Disable the modified LOO estimator: by default, εLOO is calculated with the modified

estimator in Eq. (1.30) and the correction factor in (1.31). It is possible, however, to

enable the classical LOO estimator in Eq. (1.26) as follows:

MetaOpts.OLS.ModifiedLOO = 0;

Additional configuration options are available for the creation of the experimental design

from which the least-square regression is performed. They are listed in Section 2.5.5. A

detailed list of the available configuration options for OLS can be found in Table 6.

2.5.3 Sparse PCE: Least Angle Regression

Configuring a sparse PCE with least angle regression (LARS) is very similar to setting up a

PCE with OLS (they are both regression-based methods). The code needed to create a basic

LARS-based PCE with 1,000 samples in the experimental design is as follows:

% Repor t ing the p r e v i o u s c o n f i g u r a t i o n o p t i o n s as a reminder
MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';

% S p e c i f i c a t i o n o f 14 th degree LARS−based PCE
MetaOpts.Degree = 14;
MetaOpts.Method = 'LARS';

% S p e c i f i c a t i o n o f the exper imen ta l Des ign
MetaOpts.ExpDesign.NSamples = 1000;

% C r e a t i o n o f the metamodel :
myPCE_LARS = uq_createModel(MetaOpts);

A report with basic information about the PCE results can be printed on screen by:
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uq_print(myPCE_LARS);

which produces the following report:

%------------ Polynomial chaos output ------------%

Number of input variables: 3

Maximal degree: 14

q-norm: 1.00

Size of full basis: 680

Size of sparse basis: 47

Full model evaluations: 1000

Leave-one-out error: 9.7793015e-12

Mean value: 3.5000

Standard deviation: 3.7208

Coef. of variation: 106.309%

%--------------------------------------------------%

A visual representation of the spectrum of the non-zero coefficients can visualized graphically

as follows:

uq_display(myPCE_LARS);

which produces the image in Figure 6. Note how the LARS solution only produces 47 non-

Figure 6: Graphical representation of the logarithmic spectrum of the PCE coefficients. The
sparsity of the LARS solution w.r.t. its full counterpart OLS in Figure 5 is clear.

zero coefficients, w.r.t. to the 680 of its non-sparse counterpart OLS, resulting in a much

sparser spectrum in Figure 6.
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2.5.3.1 Accessing the results

Coefficients and basis The coefficients and basis can be accessed from the structure

myPCE_LARS.PCE:

myPCE_LARS.PCE
ans =
Basis: [1x1 struct]
Coefficients: [680x1 double]
Moments: [1x1 struct]

Model evaluations

The experimental design structure containing the model evaluations used to calculate the

PCE coefficients is identical to that in OLS in Section 2.5.1.1.

myPCE_LARS.ExpDesign
ans =

NSamples: 1000
Sampling: 'LHS'
X: [1000x3 double]
U: [1000x3 double]
Y: [1000x1 double]

The ExpDesign.Sampling field has the 'LHS' value. It represents the sampling strategy

used to create the experimental design. See Section 2.5.5 for advanced options for the cre-

ation of the experimental design.

A posteriori error estimates

The a posteriori error estimates are stored in the myPCE_LARS.Error structure in the same

format as in Section 2.5.2.1:

myPCE_LARS.Error
ans =

LOO: 9.7793e-12
normEmpError: 8.5794e-12

Note that the LOO error for sparse PCE is significantly smaller than for OLS (≈ 10−8), even

though the experimental design has the same size N = 1, 000.

For a comprehensive overview of the outputs available for the LARS method, see Table 20.

2.5.3.2 Advanced options

Albeit the default settings are optimal for most real case scenarios, the LARS method allows

for the customization of several parameters that can be used to fine-tune the coefficients

estimation. They can be specified with the MetaOpts.LARS structure as follows:

• Disable the early stop criterion: with some models, LARS can stop prematurely and

yield inaccurate results. To disable the early stop criterion in Section 1.5.2.3, add:

MetaOpts.LARS.LarsEarlyStop = 0;
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Note that this option can significantly increase the computational time necessary to

calculate the coefficients.

• Disable hybrid LARS: the final OLS step of Hybrid LARS can be disabled as follows:

MetaOpts.LARS.HybridLars = 0;

If Hybrid LARS is disabled, the first coefficient is set to the mean of the experimental

design: y0 = µ̂Y .

• Store the LARS iterations in memory: by default UQLAB will not cache all the

LARS iterations after the algorithm ends, because it may require significant memory

resources. This behaviour can be changed as follows:

MetaOpts.LARS.KeepIterations = 1;

If this option is active, a large array containing all of the coefficients for each LARS

iteration is saved in: myPCE_LARS.Internal.PCE.LARS.coeff_array.

• Disable the modified LOO estimator: by default, εLOO is calculated with the modified

estimator in Eq. (1.30) and the correction factor in (1.31). It is possible, however, to

enable the classical LOO estimator in Eq. (1.26) as follows:

MetaOpts.LARS.ModifiedLoo = 0;

Note that the classical estimator tends to be less sensitive to over-fitting, hence gener-

ally producing denser and less accurate PCE models.

A detailed list of the available configuration options for LARS can be found in Table 7. Ad-

ditional configuration options are available for the creation of the experimental design from

which the least-square regression is performed. They are listed in Section 2.5.5.

2.5.4 Sparse PCE: Orthogonal Matching Pursuit

Configuring a sparse PCE using orthogonal matching pursuit (OMP) is very similar to setting

up a PCE with other regression methods (OLS or LARS). The code needed to create a OMP-

based PCE with 1000 samples in the experimental design is as follows:

% Reminder o f p r e v i o u s c o n f i g u r a t i o n o p t i o n s
MetaOpts.Type = 'Metamodel';
MetaoOpts.MetaType = 'PCE';

% S p e c i f i c a t i o n o f 14 th degree OMP−based PCE
MetaOpts.Degree = 14;
MetaOpts.Method = 'OMP';

% S p e c i f i c a t i o n o f the exper imen ta l des ign (ED)
MetaOpts.ExpDesign.NSamples = 1000;
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% C r e a t i o n o f the metamodel
myPCE_OMP = uq_createModel(MetaOpts);

A report with basic information about the PCE results can be printed on screen by:

uq_print(myPCE_OMP);

which produces the following report:

%------------ Polynomial chaos output ------------%

Number of input variables: 3

Maximal degree: 14

q-norm: 1.00

Size of full basis: 680

Size of sparse basis: 100

Full model evaluations: 1000

Leave-one-out error: 8.3177894e-12

Mean value: 3.5000

Standard deviation: 3.7208

Coef. of variation: 106.309%

%--------------------------------------------------%

A visual representation of the spectrum of the non-zero coefficients can be visualized graph-

ically as follows:

uq_display(myPCE_OMP);

which produces the image in Figure 7. The solution with OMP produces only 118 non-zero

coefficients, w.r.t. the 680 of its non-sparse counterpart OLS, resulting in the much sparser

spectrum shown in Figure 7. The OMP solution tends to produce less sparse solutions for this

particular model with respect to LARS (cf. Figure 6).

2.5.4.1 Accessing the results

Coefficients and basis The coefficients and basis can be accessed from the structure

myPCE_OMP.PCE:

myPCE_OMP.PCE
ans =
Basis: [1x1 struct]
Coefficients: [680x1 double]
Moments: [1x1 struct]

Model evaluations

The experimental design structure containing the model evaluations used to calculate the

PCE coefficients is identical to that in OLS in Section 2.5.1.1.
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Figure 7: Graphical representation of the logarithmic spectrum of the PCE coefficients. The
sparsity of the OMP solution w.r.t. its full counterpart OLS in Figure 5 is clear.

myPCE_OMP.ExpDesign
ans =
NSamples: 1000
Sampling: 'LHS'
ED_Input: [1x1 uq_input]
X: [1000x3 double]
U: [1000x3 double]
Y: [1000x1 double]

The ExpDesign.Sampling field has the 'LHS' value. It represents the sampling strategy

used to create the experimental design. See Section 2.5.5 for advanced options for the cre-

ation of the experimental design.

A posteriori error estimates

The a posteriori error estimates are stored in the myPCE_OMP.Error structure in the same

format as in Section 2.5.2.1:

myPCE_OMP.Error
ans =
LOO: 8.3178e-12
normEmpError: 6.4145e-12

Note that the LOO error for sparse PCE is significantly smaller than for OLS (≈ 10−8), even

though the experimental design has the same size N = 1, 000.

For a comprehensive overview of the outputs available for the OMP method, see Table 21.
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2.5.4.2 Advanced options

Albeit the default settings are optimal for most real case scenarios, the OMP method allows

for the customization of several parameters that can be used to fine-tune the coefficients

estimation. They can be specified with the MetaOpts.OMP structure as follows:

• Disable the early stop criterion: with some models, OMP can stop prematurely and

yield inaccurate results. To disable the early stop criterion in Section 1.5.3.2, add:

MetaOpts.OMP.OmpEarlyStop = 0;

Note that this option can significantly increase the computational time necessary to

calculate the coefficients.

• Store the OMP iterations in memory: by default UQLAB will not cache all the

OMP iterations after the algorithm ends, because it may require significant memory

resources. This behaviour can be changed as follows:

MetaOpts.OMP.KeepIterations = 1;

If this option is active, a large array containing all of the coefficients for each OMP

iteration is saved in: myPCE_OMP.Internal.PCE.OMP.coeff_array.

• Disable the modified LOO estimator: by default, εLOO is calculated with the modified

estimator in Eq. (1.30) and the correction factor in Eq. (1.31). It is possible, however,

to enable the classical LOO estimator in Eq. (1.26) as follows:

MetaOpts.OMP.ModifiedLoo = 0;

Note that the classical estimator tends to be less sensitive to over-fitting, hence gener-

ally producing denser and less accurate PCE models.

A detailed list of the available configuration options for OMP can be found in Table 8. Ad-

ditional configuration options are available for the creation of the experimental design from

which the least-square regression is performed. They are listed in Section 2.5.5.

2.5.5 Advanced experimental design options

Several options are available for the creation of the experimental design. A summary of the

most common is given in the following.

• Specify a sampling strategy: by default, the experimental design is sampled with

latin hypercube sampling (LHS). It is possible to specify any specific sampling strategy

by adding a ExpDesign.Sampling option. The following specifies sampling from a

Sobol’ pseudorandom sequence:

MetaOpts.ExpDesign.Sampling = 'Sobol';
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• Manually specify an experimental design: it is common to create PCE from already

existing data. There are two ways to import data in a UQLAB PCE MODEL:

– Specify the values of ExpDesign.X and ExpDesign.Y directly in the configuration

with the same format as in Section 2.5.1.1. Assuming such values are stored in

the local variables X_ED and Y_ED, they can be imported in UQLAB as follows:

MetaOpts.ExpDesign.X = X_ED;
MetaOpts.ExpDesign.Y = Y_ED;

– Specify a data file, e.g.'mydata.mat':

MetaOpts.ExpDesign.DataFile = 'mydata.mat';

Currently, only mat-files containing two variables X and Y can be automatically

loaded in UQLAB.

Important note: When an experimental design is specified manually there is no need

to create a MODEL object as in Section 2.2. However, an INPUT module with an input

random vector compatible with the provided experimental design must be defined. This

is an intrinsic property of PCE: fX is needed to calculate the PCE coefficients.

A comprehensive list of the options available for the calculation of the experimental design

of a PCE can be found in Table 9.

2.5.6 Degree-Adaptive PCE

Least-square minimization methods (OLS and LARS) provide the εLOO error estimator, which

can be enabled to develop basis-adaptive PCE as described in Section 1.5. Degree-adaptive

PCE is automatically enabled in UQLAB if the MetaOpts.Degree option is an array of values

instead of a single one. The following code creates a degree-adaptive sparse PCE (LARS)

with p ∈ [1, 30] from an experimental design with N = 256 for the Ishigami function:

% Repor t ing the p r e v i o u s c o n f i g u r a t i o n o p t i o n s as a reminder :
MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';

% S p e c i f i c a t i o n o f degree−a d a p t i v e LARS
MetaOpts.Degree = 1:30; % range o f degrees to be t e s t e d
MetaOpts.Method = 'LARS';

% S p e c i f i c a t i o n o f the exper imen ta l des ign
MetaOpts.ExpDesign.Sampling = 'Sobol';
MetaOpts.ExpDesign.NSamples = 256;

% C r e a t i o n o f the metamodel :
myPCE_LARSAdaptive = uq_createModel(MetaOpts);

Despite the smaller experimental design, the degree-adaptive PCE converges to a maximal

PCE degree p = 24 with the lowest εLOO amongst the examples presented in this section:
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myPCE_LARSAdaptive.Error
ans =

LOO: 7.5708e-19
normEmpError: 3.7798e-20

The resulting coefficients spectrum is shown in Figure 8.

Figure 8: Graphical representation of the logarithmic spectrum of the PCE coefficients for
degree-adaptive PCE. The analysis converged to p = 24 with N = 256.

It is therefore recommended to always specify in the PCE options a range of polynomial

degrees when using least-square methods, so as to allow adaptive PCE to adaptively choose

the best polynomial degree given the experimental design specifications.

2.5.6.1 Accessing the results

The outputs of a degree-adaptive PCE analysis are unchanged from their non-adaptive coun-

terparts, because only the iteration with the best εLOO is stored.

2.5.6.2 Advanced options

The default behaviour of the degree-adaptive scheme is to automatically stop increasing the

maximal degree if the εLOO has not decreased for at least two iterations of the algorithm.

Experience shows that once over-fitting is detected with εLOO on an experimental design,

further increasing the size of the polynomial basis results in worse PCE models. In some rare

cases, however, the algorithm can stop prematurely due to a local minimum in the εLOO vs.
p curve. This can be prevented by setting the MetaOpts.DegreeEarlyStop flag to false:

MetaOpts.DegreeEarlyStop = 0;

When disabled, all the degrees specified in the MetaOpts.Degree array will be calculated,

and the best candidate will be chosen only at the end.
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NOTE: disabling this option can increase dramatically the computational costs of the PCE

coefficients calculation, as the size of the polynomial basis (and hence the number of co-

efficients that need to be calculated) increases very rapidly with the maximum polynomial

degree.

2.6 Manually specify inputs and computational models

The UQLAB framework allows one to create many INPUT and MODEL objects in the same

session (see, e.g. UQLAB User Manual – the MODEL module and UQLAB User Manual –

the INPUT module ). The default behaviour of the PCE module is to use as probabilistic input

(resp. computational model) the last created INPUT (resp. MODEL) object. This behaviour

can be altered by manually specifying the desired objects in the configuration as follows:

• Specify an INPUT object: an INPUT object myInput can be specified with:

MetaOpts.Input = myInput;

• Specify a MODEL object: a MODEL object myModel can be specified with:

MetaOpts.FullModel = myModel;

2.7 PCE of vector-valued models

The examples presented so far in this chapter dealt with scalar-valued models. In case the

model (or the experimental design, if manually specified) has multi-component outputs (de-

noted by Nout), UQLAB performs an independent PCE for each output component on the

shared experimental design. No additional configuration is needed to enable this behaviour.

A PCE with multi-component outputs can be found in the UQLAB example in:

Examples/PCE/uq_Example_PCE_04_MultipleOutputs.m

2.7.1 Accessing the results

Running a PCE calculation on a multi-component output model will result in a multi-

component output structure. As an example, a model with 9 outputs will produce the follow-

ing output structure:

myPCE.PCE
ans =
1x9 struct array with fields:
Basis
Coefficients
Moments

Each of elements of the PCE structure is functionally identical to its scalar counterpart in

Section 2.5.1.1, 2.5.2.1 and 2.5.3.1.
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Similarly, the myPCE.Error structure becomes a multi-element structure:

myPCE.Error
ans =
1x9 struct array with fields:

LOO
normEmpError

2.8 Using PCE as a model (predictor)

Regardless on the strategy used to calculate the PCE coefficients or truncating the basis, the

PCE model in Eq. (1.3) can be used to predict new points outside of the experimental design.

Indeed, after a PCE MODEL object is created in UQLAB it can be used just like an ordinary

model (for details, see the UQLAB User Manual – the MODEL module ).

Consider the Ishigami example in Section 2.1. After calculating the coefficients with any

of the methods described in Section 2.5, one can evaluate the PCE metamodel on point

x = {0.3,−1.0, 2.2} as follows:

X = [0.3 1.0 2.2];
% E v a l u a t e the metamodel on the same i n pu t v e c t o r
YPC = uq_evalModel(X)
YPC =
5.9443

which can be compared to the true model:

YTrue = uq_ishigami(X)
YTrue =
5.9443

As most functions within UQLAB, model evaluations are vectorized, i.e.evaluating multiple

points at a time is much faster than repeatedly evaluating one point at a time. To evaluate the

response of the PCE metamodel on an input sample of size N = 105 in UQLAB, one can write

(for details on how to use the input module to sample distributions, please see the UQLAB

User Manual – the INPUT module ):

X = uq_getSample(1e5);
Y = uq_ishigami(X);
YPC = uq_evalModel(X);

The histogram and scatter plots of the Y and YPC vectors are given in Figure 9. Due to the

high accuracy of the model, the original function and the metamodel are virtually indistin-

guishable.

2.9 Manually specifying PCE parameters (predictor-only mode)

It is also possible to use the PCE module in UQLAB to build custom PCE-based models that

can be used as MODEL objects as in Section 2.8. This allows, e.g., to import a metamodel
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Figure 9: Histogram and scatter plots of true vs. metamodelled responses of the Ishigami
function to a sample of the input of size n = 105.

calculated with other software within the UQLAB framework, or even or to create one ad-hoc.
In the following, we exemplify how to create a custom PCE with the following characteristics:

• standard normal input variables;

• up to second degree Hermite polynomials polynomial basis;

• only three non-zero coefficients: y[0,0] = 5, y[0,1] = 1, y[1,1] = 3.

% S t a r t u p the framework
uqlab
% Crea te an Input o b j e c t
for ii = 1:2
inputOpts.Marginals(ii).Type = 'Gaussian';
inputOpts.Marginals(ii).Moments = [0 1];

end
myInput = uq_createInput(inputOpts);

% Crea te a custom PCE
MetaOpts.Input = myInput;
MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';
MetaOpts.Method = 'Custom';
% B a s i s : po lynomia l f a m i l i e s
MetaOpts.PCE.Basis.PolyTypes = {'Hermite','Hermite'};
% B a s i s : po lynomia l a lpha i n d i c e s
MetaOpts.PCE.Basis.Indices = [0 0; 0 1; 1 1];
% PCE c o e f f i c i e n t s ( same order as MetaOpts . PCE . B a s i s . I n d i c e s )
MetaOpts.PCE.Coefficients = [5; 1; 3];

% Crea te the metamodel
myPCE = uq_createModel(MetaOpts);

% E v a l u a t e the model on a sample o f the i n pu t
X = uq_getSample(1000);
Y = uq_evalModel(X);
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Note that UQLAB takes care automatically of any isoprobabilistic transformation between

the probabilistic input model and the space onto which the specified polynomial families are

orthogonal.

When the desired metamodel has more than one output, it is sufficient to specify the same

information for each of the outputs by adding an index i to the MetaOpts.PCE(i) structure.

2.10 Using PCE with constant parameters

In some analyses, one may need to assign a constant value to one or to a set of parameters.

When this is the case, the PCE metamodel is built by internally removing the constant param-

eters from the inputs. This process is transparent to the users as they shall still evaluate the

model using the full set of parameters (including those which were set constant). UQLAB will

automatically and appropriately account for the set of input parameters which were declared

constant.

To set a parameter to constant, the following command can be used (See UQLAB User

Manual – the INPUT module ):

inputOpts.Marginals.Type = 'Constant' ;
inputOpts.Marginals.Parameters = value;

Furthermore, when the standard deviation of a parameter is set to zero, UQLAB automatically

sets this parameter’s marginal to the type Constant. For example, the following uniformly

distributed variable whose upper and lower bounds are identical is automatically set to a

constant with value 1:

inputOpts.Marginals.Type = 'Uniform' ;
inputOpts.Marginals.Parameters = [1 1];
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Reference List

How to read the reference list

Structures play an important role throughout the UQLAB syntax. They offer a natural way

to group configuration options and output quantities semantically. Due to the complexity of

the algorithms implemented, it is not uncommon to employ nested structures to fine-tune

inputs/outputs. Throughout this reference guide, we adopt a table-based description of the

configuration structures.

The simplest case is given when a field of the structure is a simple value/array of values:

Table X: Input

 .Name String A description of the field is put here

which corresponds to the following syntax

Input.Name = 'My Input';

The columns correspond to name, data type and a brief description of each field. At the

beginning of each row a symbol is given to inform as to whether the corresponding field is

mandatory, optional, mutually exclusive, etc. The comprehensive list of symbols is given in

the following table:

 Mandatory
� Optional
⊕ Mandatory, mutually exclusive (only one of

the fields can be set)
� Optional, mutually exclusive (one of them

can be set, if at least one of the group is set,
otherwise none is necessary)

When one of the fields of a structure is a nested structure, we provide a link to a table that

describes the available options, as in the case of the Options field in the following example:
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Table X: Input

 .Name String Description

� .Options Table Y Description of the Options
structure

Table Y: Input.Options

 .Field1 String Description of Field1

� .Field2 Double Description of Field2

In some cases an option value gives the possibility to define further options related to that

value. The general syntax would be

Input.Option1 = 'VALUE1' ;
Input.VALUE1.Val1Opt1 = ...;
Input.VALUE1.Val1Opt2 = ...;

This is illustrated as follows:

Table X: Input

 .Option1 String Short description

'VALUE1' Description of 'VALUE1'

'VALUE2' Description of 'VALUE2'

� .VALUE1 Table Y Options for 'VALUE1'

� .VALUE2 Table Z Options for 'VALUE2'

Table Y: Input.VALUE1

� .Val1Opt1 String Description

� .Val1Opt2 Double Description

Table Z: Input.VALUE2

� .Val2Opt1 String Description

� .Val2Opt2 Double Description

Note: In the sequel, double/doubles mean a real number represented in double pre-
cision (resp. a set of such real numbers).
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3.1 Create a PCE meta-model

Syntax

myPCE = uq_createModel(MetaOpts)

Input

The struct variable MetaOpts contains the following fields:

Table 3: MetaOpts

 .Type 'uq_metamodel' Select the metamodelling tool

 .MetaType 'PCE' Select polynomial chaos expansion

� .Input INPUT object Probabilistic input model (See
Section 2.6)

� .Name String Unique identifier for the meta-model

� .Display String Level of information displayed by the
methods.

'quiet' Minimum display level, displays
nothing or very few information.

'standard' Default display level, shows the most
important information.

'verbose' Maximum display level, shows all the
information on runtime, like updates
on iterations, etc.

� .Degree Integer scalar Maximum polynomial degree

Integer array Set of polynomial degrees
for-degree-adaptive polynomial
chaos Section 2.5.6

� .PolyTypes 1×M Cell array of strings List of polynomial families to be used
to build the PCE basis. The default
choice is given in Table 2. If one of
the polynomial families is Jacobi or
Laguerre the corresponding
parameters should be set with
.PolyTypesParams.

� .PolyTypesParams 1×M Cell array of
doubles

Set of parameters to be used to build
the PCE basis. It is only used when
.PolyTypes contains Jacobi or
Laguerre polynomials. See
Section 2.4 for usage example.

� .TruncOptions Table 4 Basis truncation (Section 1.3.2)

� .Method String
default: 'LARS'

Coefficients calculation method
(Section 2.5)
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'Quadrature' Quadrature (Section 1.4.1)

'OLS' Ordinary Least-Squares Regression
(Section 1.4.2.1)

'LARS' Least-Angle Regression
(Section 1.5.2)

'OMP' Orthogonal Matching Pursuit
(Section 1.5.3)

'Custom' User-defined PCE coefficients and
basis (no calculations)

� .Quadrature Table 5 Quadrature options (Section 2.5.1.2)

� .OLS Table 6 OLS-specific options
(Section 2.5.2.2)

� .LARS Table 7 LARS-specific options (Section 2.5.3)

� .OMP Table 8 OMP-specific options (Section 2.5.4)

� .PCE Table 11 Custom-PCE parameters
(Section 2.9). Use the same format
as the default output of the
calculation

� .FullModel MODEL object UQLab model used to create an
experimental design (Section 2.6)

� .ExpDesign Table 9 Experimental design-specific options
(Section 2.5.5)

3.1.1 Truncation options

The truncation strategies described in Section 1.3.2 can be specified with the TruncOptions

field as described in Section 2.4.2. The full list of available options is reported in Table 4.

Table 4: MetaOpts.TruncOptions

� .qNorm Double
default: 1

Hyperbolic truncation scheme
(Section 1.3.2). Corresponds to
0 < q ≤ 1 in Eq. (1.12)

� .MaxInteraction Integer
default: M

Maximum rank truncation: limit
basis terms to MaxInteraction
variables (Section 1.3.2)

� .Custom P ×M Integer array Manual specification of the A index
set in Eq. (1.3)

3.1.2 PCE Coefficients calculation options

Method-specific options for the calculation of the PCE coefficients are reported in Ta-

bles 5 to 7.
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3.1.3 Quadrature-specific options

Table 5: MetaOpts.Quadrature

� .Level Integer
default: p+ 1

Quadrature level

� .Type String
default: 'Smolyak'

Quadrature type (full or sparse)

'Full' Full tensor-product quadrature

'Smolyak' Smolyak’ sparse quadrature

� .Rule String
default: 'Gaussian'

Quadrature rule

'Gaussian' Gaussian quadrature

3.1.4 OLS-specific options

Table 6: MetaOpts.OLS

� .TargetAccuracy Double
default: 0

Early stop leave-one-out error
threshold for degree-adaptive PCE

3.1.5 LARS-specific options

Table 7: MetaOpts.LARS

� .LarsEarlyStop Logical
default: true

Enable early stop during the LARS
adaptive basis selection
(Section 1.5.2.3).

� .TargetAccuracy Double
default: 0

Early stop leave-one-out error
threshold.

� .KeepIterations Logical
default: false

Store additional information about
LARS iterations.
Warning: memory consuming.

� .HybridLars Logical
default: true

Enable/Disable hybrid LARS
(Section 1.5.2.2)

3.1.6 OMP-specific options

Table 8: MetaOpts.OMP

� .OmpEarlyStop Logical
default: true

Enable early stop during the OMP
adaptive basis selection
(Section 1.5.3.2).

� .TargetAccuracy Double
default: 0

Early stop leave-one-out error
threshold.
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� .KeepIterations Logical
default: false

Store additional information about
OMP iterations.
Warning: memory consuming.

3.1.7 Experimental design

If a model is specified, UQLAB can automatically create an experimental design for PCE. The

available options are listed in Table 9.

Table 9: MetaOpts.ExpDesign

⊕ .Sampling String
default: 'MC'

Sampling type

'MC' Monte Carlo sampling

'LHS' Latin Hypercube sampling

'Sobol' Sobol sequence sampling

'Halton' Halton sequence sampling

� .Nsamples Integer The number of samples to draw. It is
required when .Sampling is
specified.

⊕ .X N ×M Double User defined experimental design X.
If specified, .Sampling is ignored.

⊕ .Y N ×NOut Double User defined model response Y. If
specified, .Sampling is ignored.

⊕ .DataFile String mat-file containing the experimental
design. If specified, .Sampling is
ignored.
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3.2 Accessing the results

Syntax

myPCE = uq_createModel(MetaOpts) ;

Output

Regardless on the configuration options given at creation time in the MetaOpts structure, all

PCE metamodels share the same output structure, given in Table 10.

Table 10: myPCE

.Name String Unique name of the PCE metamodel

.Options Table 3 Copy of the MetaOpts structure used to create
the metamodel

.PCE Table 11 Information about all the elements of Eq. (1.3)

.ExpDesign Table 14 Experimental design used for calculating the
coefficients

.Error Table 15 Error measures of the metamodelling
calculation results (Section 1.4.3)

.Internal Table 16 Internal state of the MODEL object (useful for
debug/diagnostics)

3.2.1 Polynomial chaos expansion information

All the information needed to evaluate and post-process a PCE are contained in the

myPCE.PCE structure. They include a basis and a set of coefficients (see Eq. (1.3)). Their

format is given in Tables 11.

Note that in case the model considered has a Nout-dimensional output, each output variable

Yi is treated separately and stored in myPCE.PCE(i).

Table 11: myPCE.PCE(i)

.Coefficients P × 1 Double Truncated PCE coefficients.

.Moments Table 12 Post-processed moments of the PCE
(Section 1.6).

.Basis Table 13 Information about the truncated polynomial
basis.

Table 12: myPCE.PCE(i).Moments

.Mean Double Mean of the PCE (Eq. (1.36))

.Var Double Variance of the PCE (Eq. (1.37))
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Table 13: myPCE.PCE(i).Basis

.Degree Double Maximum polynomial degree of the basis

.Indices P ×M Double
(Sparse)

Truncated set of indices A in Eq. (1.3)
(Section 1.3)

.PolyTypes 1×M cell array
of strings

Polynomial family for each input variable. In
the current version of UQLAB, each element
can be one of 'Legendre', 'Hermite',
'Laguerre' or 'Jacobi'

.MaxCompDeg 1×M Double Maximum degree in each input variable of
polynomials with non-zero coefficients

.MaxInteractions Double Maximum rank of the polynomials with
non-zero coefficients

3.2.2 Experimental design information

The experimental design and the corresponding model responses onto which the PCE coef-

ficients are calculated are stored in the myPCE.ExpDesign structure. They are accessible as

follows:

Table 14: myPCE.ExpDesign

.NSamples Double The number of samples

.Sampling String The sampling method

.ED_input INPUT object The input module that represents the reduced
polynomial input (X in Section 1.3.3)

.X N ×M Double The experimental design values

.U N ×M Double The experimental design values in the reduced
space

.Y N ×Nout
Double

The output Y that corresponds to the input X

.W N × 1 Double The Gaussian quadrature weights
corresponding to each quadrature node (only
available when the coefficients are calculated
with the 'Quadrature' method)

3.2.3 Error estimates

The two error estimates described in 1.4.3.3 are available in the myPCE.Error output field,

as described in Table 15.

Table 15: myPCE.Error

.LOO Double Leave-One-Out error (see section 1.4.3).

.normEmpError Double Normalized Empirical Error (see section 1.4.3)
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3.2.4 Internal fields (advanced)

Additional information that can be useful to the advanced user is stored in the myPCE.Internal

field. Both runtime information and complex data structures used internally by the UQLAB

PCE module are stored in this structure. The general structure of the myPCE.Internal field

is reported in Table 16. Note that not all the fields are always available, as they depend on

the original configuration options.

Table 16: myPCE.Internal

.Input INPUT object The probabilistic input model used to build the
PCE

.FullModel MODEL object Full computational model used to calculate the
model response (if available)

.Error Table 17 Additional information about the PCE error
estimation given in myPCE.Error

.PCE Table 18 Additional information on the PCE calculation.

.Runtime Table 23 Temporary variables and configuration flags
used during the calculation of the PCE
coefficients

Table 17: myPCE.Internal.Error

.LOO_lars Double LOO error as calculated by LARS (before
hybrid LARS)

.LOO_omp Double LOO error as calculated by OMP

Table 18: myPCE.Internal.PCE

.Degree Double Final PCE degree

.DegreeEarlyStop Logical Polynomial degree early stop criterion

.Method String Algorithm used to calculate the coefficients

.OLS Table 19 OLS-specific information

.LARS Table 20 LARS-specific information

.OMP Table 21 OMP-specific information

.Basis Table 22 Miscellaneous information about the
polynomial basis (e.g., truncation parameters)
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Table 19: myPCE.Internal.PCE.OLS

.TargetAccuracy Double Degree-adaptive early stop threshold

.LOO Array LOO error for each of the tested degrees in
degree-adaptive mode.

.normEmpError Array Normalized empirical error for each of the
tested degrees in degree-adaptive mode.

Table 20: myPCE.Internal.PCE.LARS

.TargetAccuracy Double Degree-adaptive early stop threshold

.LarsEarlyStop Logical Early stop in LARS iterations flag

.HybridLars Logical Enable/disable hybrid lars

.ModifiedLoo Logical Enable/Disable the “modified LOO” error
estimation in Eq. (1.27)

.LOO Array LOO error for each of the tested degrees in
degree-adaptive mode.

.normEmpError Array Normalized empirical error for each of the
tested degrees in degree-adaptive mode

.KeepIterations Logical Enable storage of LARS iterations (warning:
memory intensive)

.coeff_array Matrix of
doubles

Matrix of coefficients as calculated by each
iteration of LARS (requires
.KeepIterations = 1

.a_scores Vector of
doubles

Array of scores for each iteration of LARS
(score = 1-LOO). The final basis selected by
LARS is the one with the maximum a_score

.loo_scores Vector of
doubles

Array of LOO erro values for each iteration of
LARS

.lars_idx Vector of
integers

Array of indices representing the regressor
chosen at each LARS iteration

Table 21: myPCE.Internal.PCE.OMP

.TargetAccuracy Double Degree-adaptive early stop threshold

.OmpEarlyStop Logical Early stop in OMP iterations flag

.ModifiedLoo Logical Enable/Disable the “modified LOO” error
estimation in Eq. (1.27)

.LOO Vector of
doubles

LOO error for each of the tested degrees in
degree-adaptive mode.

.normEmpError Vector of
doubles

Normalized empirical error for each of the
tested degrees in degree-adaptive mode
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.KeepIterations Logical Enable storage of OMP iterations (warning:
memory intensive)

.coeff_array Matrix of
doubles

Matrix of coefficients as calculated by each
iteration of OMP (requires
.KeepIterations = 1

.a_scores Vector of
doubles

Array of scores for each iteration of OMP
(score = 1-LOO). The final basis selected by
OMP is the one with the maximum a_score

.loo_scores Vector of
doubles

Array of LOO error values for each iteration of
OMP

.omp_idx Vector of
integers

Array of indices representing the regressor
chosen at each OMP iteration

Table 22: myPCE.Internal.PCE.Basis

.Truncation Structure Structure with the truncation options used to
generate the basis. See Table 4

Table 23: myPCE.Internal.Runtime

.isInitialized Logical A flag that determines whether the current
meta-model has been initialized

.M Double The INPUT dimension

.MnonConst Integer The number of non-constants in the input

.nonConstIdx Vector of
integers

The indices of the constant variables

.isCalculated Logical A flag that determines whether all the
necessary quantities of the meta-model have
been calculated

.Nout Integer The Output dimension

.current_output Integer The current output (This is used during the
calculation of the meta-model)

.degree_index Integer Index of the PCE being considered in the
current status of the calculation
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