Climate change-associated declines in tree longevity are related to decreasing, not increasing, growth

Eric B. Searle & Han Y. H. Chen

Lakehead University, Canada

Sheffied et al. 2012. Nature **491**: 435

Observed change in surface temperature 1901-2012

Global evidence of increased tree mortality

Interdependent mechanisms

Carbon starvation
Hydraulic failure
Reduced defense to insects

TRENDS in Ecology & Evolution

Western boreal forests of Canada

Chen et al. 2016 *Ecol. Lett.*

Amazon tropical old-growth forest

Reduced longevity by climate changeinduced increased growth

Brien et al. 2015. Nature

Negative association between longevity and growth

- Among species
 - Greater investment in growth than defense, thus more vulnerable to stresses
- With species across spatial environmental gradients
 - Reaching large sizes sooner, more vulnerable to hydraulic failure and/or insect outbreaks

But temporally for same species

Radial growth patterns preceding tree mortality

Mortality driven by competition and/or longevity

Cailleret et al. 2017, GCB.

Reduced tree longevity

- Tested by individual tree data
- Longevity driven mortality, not competition
- Detailed tree age

Our testable hypotheses

- 1. The probability of ageing driven tree mortality increases with climate change
- 2. Increases in mortality probability are associated with increasing growth prior to death

Plot and tree selection

- 1. Accurately determined stand age, time since fire (years)
- 2. Age of stands > 100 years old
- 3. Dominant trees, 200 largest trees per ha

Assumption

Age of dominant tree= stand age

Species	Plots	Stems	Observations	Last age (years)
All individuals	546	14418	44976	237
P. tremuloides	287	3114	9467	196
P. balsamifera	136	717	2251	196
P. contorta	272	2866	8759	237
P. mariana	75	412	1228	184
P. glauca	442	6579	20849	216
A. balsamea	102	730	2422	216

Mortality model

$$\log \operatorname{it}(p_{ijk}) = \beta_0 + \beta_1 \cdot Y_{ijk} + \beta_2 \cdot A_{ijk}$$
$$+ \beta_3 \cdot Y_{ijk} \times A_{ijk} + \beta_4 \cdot \log(L)_{ijk} + \pi_k$$

Y, calendar yearA, tree ageL, census interval lengthΠ, plot random effect

Temporal increase in mortality

Relative growth rate model

$$RGR_{ij-1k} = \beta_0 \cdot S_{ijk} + \beta_1 \cdot Y_{ij-1k} + \beta_2 \cdot A_{ij-1k} + \pi_k + \rho_{ik}$$

S, tree status

Y, calendar year

A, tree age

Relative growth rate

Mortality response to climate change drivers

Summary

- Climate change (CO2, warming, and decreasing water availability) increased mortality of dominant trees in old stands, reducing tree longevity
- Increased tree growth is not a driver of reduced longevity. Instead, reduced longevity is likely caused by long-term climate change induced stress on growth